Skip to main content

Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides

  • Chapter
Antimicrobial Peptides and Human Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 306))

Abstract

Cationic antimicrobial peptides (CAMPs) are integral compounds of the antimicrobial arsenals in virtually all kinds of organisms, with important roles in microbial ecology and higher organisms’ host defense. Many bacteria have developed countermeasures to limit the efficacy of CAMPs such as defensins, cathelicidins, kinocidins, or bacteriocins. The best-studied bacterial CAMP resistance mechanisms involve electrostatic repulsion of CAMPs by modification of cell envelope molecules, proteolytic cleavage of CAMPs, production of CAMP-trapping proteins, or extrusion of CAMPs by energy-dependent efflux pumps. The repertoire of CAMPs produced by a given host organism and the efficiency of microbial CAMP resistance mechanisms appear to be crucial in host-pathogen interactions, governing the composition of commensal microbial communities and the virulence of bacterial pathogens. However, all CAMP resistance mechanisms have limitations and bacteria have never succeeded in becoming fully insensitive to a broad range of CAMPs. CAMPs or conserved CAMP resistance factors are discussed as new mediators and targets, respectively, of novel and sustainable anti-infective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14

    Article  PubMed  CAS  Google Scholar 

  • Andres E, Dimarcq JL (2004) Cationic antimicrobial peptides: update of clinical development. J Intern Med 255:519–520

    Article  PubMed  CAS  Google Scholar 

  • Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, Fang FC, Miller SI (2003) Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50:219–230

    Article  PubMed  CAS  Google Scholar 

  • Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI (2005) Recognitionof antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472

    Article  PubMed  CAS  Google Scholar 

  • Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, Skurray RA, Firth N, Brown MH, Koo S-P, Yeaman MR (2000) In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal proteins is associated with alterations in cytoplasmic membrane fluidity. Infect Immun 68:3548–3553

    Article  PubMed  CAS  Google Scholar 

  • Bengoechea JA, Skurnik M (2000) Temperature-regulated efflux pump/potassiumantiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 37:67–80

    Article  PubMed  CAS  Google Scholar 

  • Bisno AL, Brito MO, Collins CM (2003) Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3:191–200

    Article  PubMed  CAS  Google Scholar 

  • Brissette CA, Simonson LG, Lukehart SA (2004) Resistance to human beta-defensins is common among oral treponemes. Oral Microbiol Immunol 19:403–407

    Article  PubMed  CAS  Google Scholar 

  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107–7114

    Article  PubMed  CAS  Google Scholar 

  • Cao M, Helmann JD (2004) The Bacillus subtilis extracytoplasmic-function sigmaX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 186:1136–1146

    Article  PubMed  CAS  Google Scholar 

  • Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KP, Van Strijp JA, Gotz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186:214–219

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Guinane CM, Hill C (2002) The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 46:2784–2790

    Article  PubMed  CAS  Google Scholar 

  • Devaux PF, Morris R (2004) Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5:241–246

    Article  PubMed  CAS  Google Scholar 

  • Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL (2006) The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J 20:35–42

    Article  PubMed  CAS  Google Scholar 

  • Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    Article  PubMed  CAS  Google Scholar 

  • Dürr M, Peschel A (2002) Chemokines meet defensins—the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun 70:6515–6517

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH, Hu B, Higa F, Edelstein MA (2003) lvgA, a novel Legionella pneumophila virulence factor. Infect Immun 71:2394–2403

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, Miller SI (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286:1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Guina T, Miller SI (2001) Salmonella typhimuriumoutermembrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278:16561–16566

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  • Gao LY, Laval F, Lawson EH, Groger RK, Woodruff A, Morisaki JH, Cox JS, Daffe M, Brown EJ (2003) Requirement for kasB in Mycobacteriummycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563

    Article  PubMed  CAS  Google Scholar 

  • García Véscovi E, Soncini FC, Groisman EA (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–174

    Article  PubMed  Google Scholar 

  • Groisman EA (1994) How bacteria resist killing by host defense peptides. Trends Microbiol Sci 2:444–448

    Article  CAS  Google Scholar 

  • Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Cramton S, Goetz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426

    Article  PubMed  CAS  Google Scholar 

  • Guder A, Wiedemann I, Sahl HG (2000) Post translationally modified bacteriocins—the lantibiotics. Biopolymers 55:62–73

    Article  PubMed  CAS  Google Scholar 

  • Guina T, Yi EC, Wang H, Hackett M, Miller SI (2000) A PhoP-regulated outermembrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182:4077–4086

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27:1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 68:6139–6146

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–198

    Article  PubMed  CAS  Google Scholar 

  • Gustafson J, Strassle A, Hachler H, Kayser FH, Berger-Bachi B (1994) The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J Bacteriol 176:1460–1467

    PubMed  CAS  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    PubMed  CAS  Google Scholar 

  • Hornef MW, Putsep K, Karlsson J, Refai E, Andersson M (2004) Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol 5:836–843

    Article  PubMed  CAS  Google Scholar 

  • Huijbregts RP, de Kroon AI, de Kruijff B (2000) Topology and transport of membrane lipids in bacteria. Biochim Biophys Acta 1469:43–61

    PubMed  CAS  Google Scholar 

  • Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G ( 2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7:180–185

    Article  PubMed  CAS  Google Scholar 

  • Jack RW, Bierbaum G, Sahl H-G (1998) Lantibiotics and related peptides. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM (2003) Agonococcal effluxpump systemenhances bacterial survival in a femalemousemodel of genital tract infection. Infect Immun 71:5576–5582

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176

    PubMed  CAS  Google Scholar 

  • Joly S, Maze C, McCray PB Jr, Guthmiller JM (2004) Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 42:1024–1029

    Article  PubMed  CAS  Google Scholar 

  • Katzif S, Danavall D, Bowers S, Balthazar JT, Shafer WM (2003) The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 71:4304–4312

    Article  PubMed  CAS  Google Scholar 

  • Koprivnjak T, Peschel A, Gelb MH, Liang NS, Weiss JP (2002) Role of charge properties of bacterial envelope in bactericidal action of human Group IIA phospholipase A2 against Staphylococcus aureus. J Biol Chem 277:47636–47644

    Article  PubMed  CAS  Google Scholar 

  • Kristian SA, Durr M, Van Strijp JA, Neumeister B, Peschel A (2003a) MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 71:546–549

    Article  PubMed  CAS  Google Scholar 

  • Kristian SA, Lauth X, Nizet V, Goetz F, Neumeister B, Peschel A, Landmann R (2003b) Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J Infect Dis 188:414–423

    Article  PubMed  CAS  Google Scholar 

  • Kristian S, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo R, Nizet V (2005) D-alanylation of teichoic acids promotes group A streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725

    Article  PubMed  CAS  Google Scholar 

  • Kupferwasser LI, Skurray RA, Brown MH, Firth N, Yeaman MR, Bayer AS (1999) Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43:2395–2399

    PubMed  CAS  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins—components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738

    Article  PubMed  CAS  Google Scholar 

  • Leippe M, Herbst R (2004) Ancient weapons for attack and defense: the pore-forming polypeptides of pathogenic enteric and free-livingamoeboid protozoa. J Eukaryot Microbiol 51:516–521

    Article  PubMed  CAS  Google Scholar 

  • Maxwell AI, Morrison GM, Dorin JR (2003) Rapid sequence divergence in mammalian beta-defensins by adaptive evolution. Mol Immunol 40:413–421

    Article  PubMed  CAS  Google Scholar 

  • McPhee JB, Lewenza S, Hancock RE (2003) Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50:205–217

    Article  PubMed  CAS  Google Scholar 

  • Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, Yamazaki K, Sayama K, Taubman MA, Kurihara H, Hashimoto K, Sugai M (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71:3730–3739

    Article  PubMed  CAS  Google Scholar 

  • Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3:36–46

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) Acontinuumof anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Nishimura E, Eto A, Kato M, Hashizume S, Imai S, Nisizawa T, Hanada N (2004) Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol 48:85–87

    Article  PubMed  CAS  Google Scholar 

  • Nizet V (2005) Antimicrobial peptide resistance in human bacterial pathogens. In: Gallo RL (ed) Antimicrobial peptides in human health and disease. Horizon Bioscience, Norfolk, UK, pp 277–304

    Google Scholar 

  • Nizet V, Gallo RL (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis 35:670–676

    Article  PubMed  CAS  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    Article  PubMed  CAS  Google Scholar 

  • Nummila K, Kilpeläinen I, Zähringer U, Vaara M, Helander IM (1995) Lipopolysac-charides of polymyxin B-resistant mutants of Escherichia coli are extensively sub-stituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 16:271–278

    PubMed  CAS  Google Scholar 

  • Oku Y, Kurokawa K, Ichihashi N, Sekimizu K (2004) Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150:45–51

    Article  PubMed  CAS  Google Scholar 

  • Otto M (2005) Bacterial evasion of antimicrobial peptides by biofilm formation. In: Shafer WM (ed) Antimicrobial peptides and human disease. Curr Top Microbiol Immunol (in press)

    Google Scholar 

  • Pag U, Sahl HG (2002) Multiple activities in lantibiotics—models for the design of novel antibiotics? Curr Pharm Des 8:815–833

    Article  PubMed  CAS  Google Scholar 

  • Patil A, Hughes AL, Zhang G (2004) Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol Genomics 20:1–11

    Article  PubMed  CAS  Google Scholar 

  • Peacock SJ, de Silva I, Lowy FD (2001) What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 9:605–610

    Article  PubMed  CAS  Google Scholar 

  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. J Biol Chem 270:15598–15606

    Article  PubMed  CAS  Google Scholar 

  • Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Götz F (1996) Analysis of the Staphylococcus epidermidis genes epiF, E, and G involved in epidermin immunity. J Bacteriol 178:531–536

    PubMed  CAS  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem 274:8405–8410

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Vuong C, Otto M, Götz F (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolysins. Antimicrob Agents Chemother 44:2845–2847

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KPM, van Strijp JAG (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 193:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy MC, Trieu-Cuot P (2003) Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Proctor RA, Kahl B, von Eiff C, Vaudaux PE, Lew DP, Peters G (1998) Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 27[Suppl 1]:68–74

    Article  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic Press, London

    Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  PubMed  CAS  Google Scholar 

  • Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A (2004) Mammalian defensins: structures andmechanism of antibiotic activity. J Leukoc Biol 77:466–475

    Article  PubMed  CAS  Google Scholar 

  • Sahly H, Schubert S, Harder J, Rautenberg P, Ullmann U, Schroder J, Podschun R (2003) Burkholderia is highly resistant to human Beta-defensin 3. Antimicrob Agents Chemother 47:1739–1741

    Article  PubMed  CAS  Google Scholar 

  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168

    Article  PubMed  CAS  Google Scholar 

  • Shafer WM, Qu X-D, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Shelburne CE, Coulter WA, Olguin D, Lantz MS, Lopatin DE (2005) Induction of β-defensin resistance in the oral anaerobe Porphyromonas gingivalis. Antimicrob Agents Chemother 49:183–187

    Article  PubMed  CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  PubMed  CAS  Google Scholar 

  • Staubitz P, Peschel A (2002) MprF-mediated lysinylation of phospholipids in Bacillus subtilis—protection against bacteriocins in terrestrial environments? Microbiology 148:3331–3332

    PubMed  CAS  Google Scholar 

  • Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A (2004) MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231:67–71

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 53:283–288

    Article  CAS  Google Scholar 

  • Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP (1998) Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180:4002–4006

    PubMed  CAS  Google Scholar 

  • Van Veen HW, Konings WN(1997) Drug efflux proteins inmultidrug resistant bacteria. Biol Chem 378:769–777

    PubMed  Google Scholar 

  • Von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001)Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N Eng J Med 344:11–16

    Article  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  PubMed  CAS  Google Scholar 

  • Wecke J, Madela K, Fischer W (1997) The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143:2953–2960

    Article  CAS  Google Scholar 

  • Weidenmaier C, Kristian SA, Peschel A (2003) Bacterial resistance to antimicrobial host defenses—an emerging target for novel antiinfective strategies? Curr Drug Targets 4:643–649

    Article  PubMed  CAS  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturyia T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245

    Article  PubMed  CAS  Google Scholar 

  • Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS (2005) DltABCD-and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73:8033–8038

    Article  PubMed  CAS  Google Scholar 

  • Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, van Keulen PH, Vandenbroucke-Grauls CM, Meester MH, Verbrugh HA (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus noncarriers. Lancet 364:703–705

    Article  PubMed  Google Scholar 

  • Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA (2000) A signal transduction system that responds to extracellular iron. Cell 103:113–125

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74:448–455

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Bayer AS, Koo S-P, Foss W, Sullam PM (1998) Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 101:178–187

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kraus, D., Peschel, A. (2006). Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides. In: Shafer, W.M. (eds) Antimicrobial Peptides and Human Disease. Current Topics in Microbiology and Immunology, vol 306. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29916-5_9

Download citation

Publish with us

Policies and ethics