Skip to main content

Parallel Solution of Cardiac Reaction-Diffusion Models

  • Conference paper
Domain Decomposition Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 40))

Summary

We present and study a parallel iterative solver for reaction-diffusion systems in three dimensions arising in computational electrocardiology, such as the Bidomain and Monodomain models. The models include intramural fiber rotation and anisotropic conductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations. The solver employs structured isoparametric Q1 finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library and large-scale computations with up to O(107) unknowns have been run on parallel computers. These simulation of the full Bidomain model (without operator or variable splitting) for a full cardiac cycle are, to our knowledge, among the most complete in the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc users manual. Technical Report ANL-95/11-Revision 2.1.1, Argonne National Laboratory, 2001.

    Google Scholar 

  • P. Colli Franzone and L. F. Pavarino. A parallel solver for reaction-diffusion systems in computational electrocardiology. Technical report, IMATI CNR Tech. Rep. 9-PV, 2003.

    Google Scholar 

  • P. Colli Franzone and G. Savaré. Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In A. Lorenzi and B. Ruf, editors, Evolution equations, Semigroups and Functional Analysis, pages 49–78. Birkhauser, 2002.

    Google Scholar 

  • J. Keener and J. Sneyd. Mathematical Physiology. Springer, 1998.

    Google Scholar 

  • I. LeGrice and et al. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol), 269(38):H571–H582, 1995.

    Google Scholar 

  • C. Luo and Y. Rudy. A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res., 68(6):1501–1526, 1991.

    Google Scholar 

  • M. Pennacchio. The mortar finite element method for the cardiac bidomain model of extracellular potential. J. Sci. Comp., 20(2), 2004. To appear.

    Google Scholar 

  • A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  • B. F. Smith, P. E. Bjøstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

    Google Scholar 

  • D. Streeter. Gross morphology and fiber geometry in the heart. In R. Berne, editor, Handbook of Physiology, vol. 1 The Heart, pages 61–112. Williams & Wilkins, Baltimore, 1979.

    Google Scholar 

  • A. Victorri and et al. Numerical integration in the reconstruction of cardiac action potential using the Hodgkin-Huxley type models. Comp. Biomed. Res., 18:10–23, 1985.

    Article  Google Scholar 

  • R. Weber dos Santos, G. Plank, B. S., and V. E.J. Preconditioning techniques for the bidomain equations. In R. K. et al., editor, These Proceedings. LNCSE. Springer, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pavarino, L.F., Franzone, P.C. (2005). Parallel Solution of Cardiac Reaction-Diffusion Models. In: Barth, T.J., et al. Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26825-1_72

Download citation

Publish with us

Policies and ethics