Skip to main content

Zeta Potential of Photochemically Modified Polymer Surfaces

  • Conference paper
  • First Online:
Characterization of Polymer Surfaces and Thin Films

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 132))

Abstract

The present work is focused on the introduction of sulfonic acid groups (−SO 3 H) onto low-density polyethylene (LDPE) surfaces by photosulfonation. The generation of sulfonic acid groups at the polyethylene surfaces and the degree of photosulfonation were examined by FTIR-spectroscopy, contact angle testing as well as zeta potential measurements. The contact angle θ of water decreased from θ = 99° (pristine LDPE) to about θ = 30° (photosulfonated LDPE) and then remained constant. From contact angle data with different test liquids a significant increase in the polar component γP of the surface tension γ was evidenced, while the dispersive component γD remained almost constant. Zeta potential measurements were performed for the investigation of electrokinetic effects at the solid/liquid interface. The ζ-potential of the modified LDPE surfaces shifted to less negative values with increasing UV irradiation time corresponding to a higher hydrophilicity of the photosulfonated polyethylene surfaces. Concomitantly the isoelectric point was shifted to lower pH values, which indicates an increasing amount of acidic -SO3H groups present at the sample surface. However, strongly photosulfonated LDPE surfaces became partly soluble in aqueous media which limits the amount of -SO3H groups present at the modified LDPE surface. To reduce these effects, LDPE samples were cross-linked by e-beam irradiation and then subjected to the photosulfonation process. Compared to standard LDPE, crosslinked LDPE displayed a higher content of -SO3H groups and higher surface polarity after photosulfonation. This was evidenced both by zeta potential and contact angle measurements. It is thus demonstrated that sample pre-treatment by crosslinking provides more stable surfaces which maintain their polar properties during water contact. This is explained by a lower amount of extractable components as a result of radiation-induced network formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan C-M (1994) Polymer Surface Modification and Characterization. Hanser, Munich

    Google Scholar 

  2. Chan C-M, Ko T-M, Hiraoka H (1996) Surf Sci Rep 24:1

    Article  CAS  Google Scholar 

  3. Armbruster K, Osterhold M (1990) Kunststoffe 80:1241

    CAS  Google Scholar 

  4. Giroux TA, Cooper SL (1991) J Appl Polym Sci 43:145

    Article  CAS  Google Scholar 

  5. Bevington JC, Ratti L (1972) Eur Polym J 8:1105

    Article  CAS  Google Scholar 

  6. Niino H, Yabe A (1993) Appl Phy Lett 63:3527

    Article  CAS  Google Scholar 

  7. Meyer U, Kern W, Ebel MF, Svagara R (1999) Macromol Rapid Commun 20:515

    Article  CAS  Google Scholar 

  8. Okoshi M, Murahara M, Toyoda K (1992) J Mater Res 7:1912

    Article  CAS  Google Scholar 

  9. Garbassi F, Morra M, Ochiello E (1998) Polymer Surfaces – From Physics to Technology. Wiley, Chichester

    Google Scholar 

  10. Siqueira-Petri DF, Wenz G, Schunk P, Schimmel T, Bruns M, Dichtl MA (1999) Colloid Polym Sci 277:673

    Article  CAS  Google Scholar 

  11. Braun M, Maurette MT, Oliveros E (1991) Photochemical Technology. Wiley, Chichester

    Google Scholar 

  12. Orthner L (1950) Angew Chem 62:302

    Article  Google Scholar 

  13. Graf R (1952) Justus Liebig Ann Chem 578:50

    Article  CAS  Google Scholar 

  14. Asinger F, Geisler G, Eckholdt H (1956) Chem Ber 89:1037

    Article  CAS  Google Scholar 

  15. Harting H (1975) Chem Ztg 99:175

    Google Scholar 

  16. Feiertag P (2000) Oberflächenmodifizierung von Polymeren durch Photosulfonierung. Diploma Thesis, Graz University of Technology

    Google Scholar 

  17. Feiertag P, Kavc T, Meyer U, Gsoels I, Kern W, Rom I, Hofer F (2001) Synthetic Metals 121:1371

    Article  CAS  Google Scholar 

  18. Kavc T, Kern W, Ebel MF, Svagera R, Pölt P (2000) Chem Mater 12:1053

    Article  CAS  Google Scholar 

  19. Kern W, Kavc T (2001) Patent application EP 890227.2

    Google Scholar 

  20. Kaneko M, Sato H (2004) Macromol Chem Phys 205:173

    Article  CAS  Google Scholar 

  21. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  22. Ström G, Frederiksson M, Stenius P. J Coll Interf Sci 10, 119/2:352

    Google Scholar 

  23. Smoluchowski M (1921) Handbook of Electricity and Magnetism, Vol 2. Barth, Leipzig

    Google Scholar 

  24. Fairbrother F, Mastin H (1924) J Chem Soc 75:2318

    Google Scholar 

  25. Stakne K, Smole MS, Kleinschek KS, Jaroschuk A, Ribitsch V (2003) J Mat Sci 38:2167

    Article  CAS  Google Scholar 

  26. Bismarck A, Mohanty AK, Aranberri-Askargorta I, Czapla S, Misra M, Hinrichsen G, Springer J (2001) Green Chemistry 3:100

    Article  CAS  Google Scholar 

  27. Wuertz C, Bismarck A, Springer J, Königer R (1999) Prog Org Coat 37:117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the Kplus-program of the Austrian Ministry of Traffic, Innovation and Technology with contributions of Graz University of Technology (TU Graz), Anton Paar GmbH (Graz) and KEKELIT Kunststoffwerk GmbH (Linz). PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria. Further thanks to ARC Seibersdorf research GmbH (Dr. J. Wendrinsky) for performing the e-beam irradiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kern .

Editor information

Karina Grundke Manfred Stamm Hans-Jürgen Adler

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Temmel, S., Kern, W., Luxbacher, T. Zeta Potential of Photochemically Modified Polymer Surfaces. In: Grundke, K., Stamm, M., Adler, HJ. (eds) Characterization of Polymer Surfaces and Thin Films. Progress in Colloid and Polymer Science, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_032

Download citation

Publish with us

Policies and ethics