Skip to main content

Clinical Application of Musculoskeletal CT: Trauma, Oncology, and Postsurgery

  • Chapter
  • First Online:
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Soon after its introduction to the clinical practice in the late 1970s, CT began to be used for the evaluation of musculoskeletal disorders (Wilson et al. 1978). As with other organs and systems, modern MSK imaging strategy uses a multimodality approach, taking advantage of the strengths of various imaging methods (radiographs, ultrasound, nuclear medicine, CT and MR imaging) (Cotten 2013). For a variety of reasons, CT is frequently part of the diagnostic workup and posttreatment follow-up of patients with MSK disorders. Due to its capacity to depict bony structures in great detail without superimposition, CT offers considerable advantages over conventional radiographs. Bone abnormalities are involved in the physiopathology of several types of MSK diseases, such as acute trauma, overstress syndromes, osteoarthritis, neoplasia, and inflammatory diseases. Finally, contrast-enhanced CT also has multiple applications in MSK imaging, allowing better visualization of soft tissue anomalies and further characterization of bony lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Andersson KM, Nowik P, Persliden J, Thunberg P, Norrman E (2015) Metal artefact reduction in CT imaging of hip prostheses – an evaluation of commercial techniques provided by four vendors. Br J Radiol 88(1052):20140473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anract P, Biau D, Babinet A, Tomeno B (2014) Pelvic reconstructions after bone tumor resection. Bull Cancer 101(2):184–194

    PubMed  Google Scholar 

  • AurĂ©gan J-C, Pietton R, BĂ©guĂ© T, Anract P, Biau D (2016) Effect of anatomic site and irradiation on the rates of revision and infection of allograft-prosthesis composites after resection of a primary bone tumor: a meta-analysis. Arch Orthop Trauma Surg 136(10):1371–1380

    PubMed  Google Scholar 

  • Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TRC (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429

    PubMed  Google Scholar 

  • Bancroft LW (2011) Postoperative tumor imaging. Semin Musculoskelet Radiol 15(4):425–438

    PubMed  Google Scholar 

  • Bardo DME, Brown P (2008) Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications. Curr Cardiol Rev 4(3):231–243

    PubMed  PubMed Central  Google Scholar 

  • Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Menke DM, DeOrio JK (2006) Imaging characteristics of bone graft materials. Radiographics 26(2):373–388

    PubMed  Google Scholar 

  • Beeres M, Wichmann JL, Paul J, Mbalisike E, Elsabaie M, Vogl TJ et al (2015) CT chest and gantry rotation time: does the rotation time influence image quality? Acta Radiol 56(8):950–954

    PubMed  Google Scholar 

  • Blum A, Meyer J-B, Raymond A, Louis M, Bakour O, Kechidi R et al (2016a) CT of hip prosthesis: new techniques and new paradigms. Diagn Interv Imaging 97(7–8):725–733

    CAS  PubMed  Google Scholar 

  • Blum A, Gondim-Teixeira P, Gabiache E, Roche O, Sirveaux F, Olivier P et al (2016b) Developments in imaging methods used in hip arthroplasty: a diagnostic algorithm. Diagn Interv Imaging 97(7–8):735–747

    CAS  PubMed  Google Scholar 

  • Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K et al (2015) Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One 10(11):e0143584

    PubMed  PubMed Central  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    CAS  PubMed  Google Scholar 

  • Chakarun CJ, Learch TJ, White EA, Menendez LR, Brien EW, Matcuk GR et al (2013) Limb-sparing surgery for distal femoral and proximal tibial bone lesions: imaging findings with intraoperative correlation. AJR Am J Roentgenol 200(2):W193–W203

    PubMed  Google Scholar 

  • Cook GE, Bates BD, Tornetta P, McKee MD, Morshed S, Slobogean GP et al (2015) Assessment of fracture repair. J Orthop Trauma 29(Suppl 12):S57–S61

    PubMed  Google Scholar 

  • Cotten A (2013) Imagerie musculosquelettique: pathologies gĂ©nĂ©rales, 2nd ed. Elsevier Masson, p 1064

    Google Scholar 

  • Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H (2016) Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7(6):849–856

    PubMed  PubMed Central  Google Scholar 

  • Davies AM, Makwana NK, Grimer RJ, Carter SR (1997) Skip metastases in Ewing’s sarcoma: a report of three cases. Skelet Radiol 26(6):379–384

    CAS  Google Scholar 

  • De Simone M, Muccio CF, Pagnotta SM, Esposito G, Cianfoni A (2013) Comparison between CT and MR in perfusion imaging assessment of high-grade gliomas. Radiol Med 118(1):140–151

    CAS  PubMed  Google Scholar 

  • Ebert LC, Schweitzer W, Gascho D, Ruder TD, Flach PM, Thali MJ et al (2016) Forensic 3D visualization of CT data using cinematic volume rendering: a preliminary study. AJR Am J Roentgenol 8:1–8

    Google Scholar 

  • Farshad-Amacker NA, Alkadhi H, Leschka S, Frauenfelder T (2013) Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study. Acad Radiol 20(10):1234–1239

    PubMed  Google Scholar 

  • Fletcher BD (1991) Response of osteosarcoma and Ewing sarcoma to chemotherapy: imaging evaluation. AJR Am J Roentgenol 157(4):825–833

    CAS  PubMed  Google Scholar 

  • Foster BR, Anderson SW, Uyeda JW, Brooks JG, Soto JA (2011) Integration of 64-detector lower extremity CT angiography into whole-body trauma imaging: feasibility and early experience. Radiology 261(3):787–795

    PubMed  Google Scholar 

  • Fritz J, Fishman EK, Corl F, Carrino JA, Weber KL, Fayad LM (2012) Imaging of limb salvage surgery. AJR Am J Roentgenol 198(3):647–660

    PubMed  Google Scholar 

  • Gervaise A, Teixeira P, Villani N, Lecocq S, Louis M, Blum A (2013) CT dose optimisation and reduction in osteoarticular disease. Diagn Interv Imaging 94(4):371–388

    CAS  PubMed  Google Scholar 

  • Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G, Leipsic JA et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):339–357

    PubMed  Google Scholar 

  • Geyer LL, Körner M, Harrieder A, Mueck FG, Deak Z, Wirth S et al (2016) Dose reduction in 64-row whole-body CT in multiple trauma: an optimized CT protocol with iterative image reconstruction on a gemstone-based scintillator. Br J Radiol 89(1061):20160003

    PubMed  PubMed Central  Google Scholar 

  • Gibson PD, Bercik MJ, Ippolito JA, Didesch J, Hwang JS, Koury KL et al (2016) The role of computed tomography scans in surgical planning for trimalleolar fracture. A survey of OTA members. J Orthop Trauma

    Google Scholar 

  • Gondim Teixeira PA (2013) Musculoskeletal disorders: DSA-like bone subtraction with 320 detector row CT. Visions magazine 21

    Google Scholar 

  • Gondim Teixeira PA, Meyer J-B, Baumann C, Raymond A, Sirveaux F, Coudane H et al (2014a) Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures. Skelet Radiol 43(9):1237–1246

    Google Scholar 

  • Gondim Teixeira PA, Lecocq S, Louis M, Aptel S, Raymond A, Sirveaux F et al (2014b) Wide area detector CT perfusion: can it differentiate osteoid osteomas from other lytic bone lesions? Diagn Interv Imaging 95:587–594

    CAS  PubMed  Google Scholar 

  • Gondim Teixeira PA, Gervaise A, Louis M, Lecocq S, Raymond A, Aptel S et al (2015) Musculoskeletal wide detector CT: principles, techniques and applications in clinical practice and research. Eur J Radiol 84(5):892–900

    PubMed  Google Scholar 

  • Gondim Teixeira PA, Formery A-S, Jacquot A, Lux G, Loiret I, Perez M et al (2017a) Quantitative analysis of subtalar joint motion with 4D CT: proof of concept with cadaveric and healthy subject evaluation. AJR Am J Roentgenol 208(1):150–158

    PubMed  Google Scholar 

  • Gondim Teixeira PA, Formery A-S, Hossu G, Winninger D, Batch T, Gervaise A et al (2017b) Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation. Eur Radiol 27(2):437–446

    PubMed  Google Scholar 

  • Gruber L, Loizides A, Luger AK, Glodny B, Moser P, Henninger B et al (2016) Soft-tissue tumor contrast enhancement patterns: diagnostic value and comparison between ultrasound and MRI. AJR Am J Roentgenol 13:1–9

    Google Scholar 

  • GĂĽnther K-P, Schmitt J, Campbell P, Delaunay CP, Drexler H, Ettema HB et al (2013) Consensus statement “current evidence on the management of metal-on-metal bearings” – April 16, 2012. Hip Int 23(1):2–5

    PubMed  Google Scholar 

  • Hannemann F, Hartmann A, Schmitt J, LĂĽtzner J, Seidler A, Campbell P et al (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Traumatol Surg Res 99(3):263–271

    CAS  PubMed  Google Scholar 

  • Higashigaito K, Angst F, Runge VM, Alkadhi H, OF D (2015) Metal artifact reduction in pelvic computed tomography with hip prostheses: comparison of virtual monoenergetic extrapolations from dual-energy computed tomography and an iterative metal artifact reduction algorithm in a phantom study. Investig Radiol 50(12):828–834

    Google Scholar 

  • James SLJ, Panicek DM, Davies AM (2008) Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol 67(1):11–21

    CAS  PubMed  Google Scholar 

  • Jeong S, Kim SH, Hwang EJ, Shin C-I, Han JK, Choi BI (2015) Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT: phantom and clinical study results. AJR Am J Roentgenol 204(2):307–317

    PubMed  Google Scholar 

  • Jo VY, Fletcher CDM (2014) WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 46(2):95–104

    CAS  PubMed  Google Scholar 

  • Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164(2):576–577

    CAS  PubMed  Google Scholar 

  • Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF (2010) Magnetic resonance imaging near metal implants. J Magn Reson Imaging 32(4):773–787

    CAS  PubMed  Google Scholar 

  • Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    PubMed  Google Scholar 

  • Kwon Y-M, Lombardi AV, Jacobs JJ, Fehring TK, Lewis CG, Cabanela ME (2014) Risk stratification algorithm for management of patients with metal-on-metal hip arthroplasty: consensus statement of the American Association of Hip and Knee Surgeons, the American Academy of Orthopaedic surgeons, and the hip society. J Bone Joint Surg Am 96(1):e4

    PubMed  Google Scholar 

  • Leavey PJ, Day MD, Booth T, Maale G (2003) Skip metastasis in osteosarcoma. J Pediatr Hematol Oncol 25(10):806–808

    PubMed  Google Scholar 

  • Lee T-Y, Chhem RK (2010) Impact of new technologies on dose reduction in CT. Eur J Radiol 76(1):28–35

    PubMed  Google Scholar 

  • Lee M-J, Kim S, Lee S-A, Song H-T, Huh Y-M, Kim D-H et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27(3):791–803

    PubMed  Google Scholar 

  • Lee YH, Park KK, Song H-T, Kim S, Suh J-S (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340

    PubMed  Google Scholar 

  • Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG (2009) Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skelet Radiol 38(8):797–802

    Google Scholar 

  • Machida H, Yuhara T, Tamura M, Ishikawa T, Tate E, Ueno E et al (2016) Whole-body clinical applications of digital tomosynthesis. Radiographics 36(3):735–750

    PubMed  Google Scholar 

  • Mendel T, Radetzki F, Wohlrab D, Stock K, Hofmann GO, Noser H (2013) CT-based 3-D visualisation of secure bone corridors and optimal trajectories for sacroiliac screws. Injury 44(7):957–963

    PubMed  Google Scholar 

  • Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H (2013) Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 268(1):237–244

    PubMed  Google Scholar 

  • Morshed S (2014) Current options for determining fracture union. Adv Med 2014:708574

    PubMed  PubMed Central  Google Scholar 

  • Omoumi P, Rubini A, Dubuc J-E, Vande Berg BC, Lecouvet FE (2015) Diagnostic performance of CT-arthrography and 1.5 T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol 25(4):961–969

    PubMed  Google Scholar 

  • Otton J, Morton G, Schuster A, Bigalke B, Marano R, Olivotti L et al (2013) A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom. J Cardiovasc Comput Tomogr 7(2):117–124

    PubMed  PubMed Central  Google Scholar 

  • Parrish FJ (2007) Volume CT: state-of-the-art reporting. AJR Am J Roentgenol 189(3):528–534

    PubMed  Google Scholar 

  • Pessis E, Campagna R, Sverzut J-M, Bach F, Rodallec M, Guerini H et al (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583

    PubMed  Google Scholar 

  • Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH (2012) CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics 32(4):1089–1107

    PubMed  Google Scholar 

  • Ruggieri P, Mavrogenis AF, Mercuri M (2011) Quality of life following limb-salvage surgery for bone sarcomas. Expert Rev Pharmacoecon Outcomes Res 11(1):59–73

    PubMed  Google Scholar 

  • Sedlic A, Chingkoe CM, Tso DK, Galea-Soler S, Nicolaou S (2013) Rapid imaging protocol in trauma: a whole-body dual-source CT scan. Emerg Radiol 20(5):401–408

    PubMed  Google Scholar 

  • Tan TJ, Aljefri AM, Clarkson PW, Masri BA, Ouellette HA, Munk PL et al (2015) Imaging of limb salvage surgery and pelvic reconstruction following resection of malignant bone tumours. Eur J Radiol 84(9):1782–1790

    PubMed  Google Scholar 

  • Teixeira PAG, Chanson A, Beaumont M, Lecocq S, Louis M, Marie B et al (2013) Dynamic MR imaging of osteoid osteomas: correlation of semiquantitative and quantitative perfusion parameters with patient symptoms and treatment outcome. Eur Radiol 23:2602–2611

    PubMed  Google Scholar 

  • Teixeira PAG, Gervaise A, Louis M, Raymond A, Formery A-S, Lecocq S et al (2015a) Musculoskeletal wide-detector CT kinematic evaluation: from motion to image. Semin Musculoskelet Radiol 19(5):456–462

    PubMed  Google Scholar 

  • Teixeira PAG, Beaumont M, Gabriela H, Bailiang C, Verhaeghe J-L, Sirveaux F et al (2015b) Advanced techniques in musculoskeletal oncology: perfusion, diffusion, and spectroscopy. Semin Musculoskelet Radiol 19(5):463–474

    PubMed  Google Scholar 

  • Thomas J, Rideau AM, Paulson EK, Bisset GS (2008) Emergency department imaging: current practice. J Am Coll Radiol 5(7):811–6e2

    PubMed  Google Scholar 

  • van de Giessen M, Foumani M, Vos FM, Strackee SD, Maas M, Van Vliet LJ et al (2012) A 4D statistical model of wrist bone motion patterns. IEEE Trans Med Imaging 31(3):613–625

    PubMed  Google Scholar 

  • van der Woude HJ, Verstraete KL, Hogendoorn PC, Taminiau AH, Hermans J, Bloem JL (1998) Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 208(3):821–828

    PubMed  Google Scholar 

  • van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW, Taminiau AHM, van Coevorden F, Zwinderman AH et al (2004) Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233(2):493–502

    PubMed  Google Scholar 

  • Verburg JM, Seco J (2012) CT metal artifact reduction method correcting for beam hardening and missing projections. Phys Med Biol 57(9):2803–2818

    PubMed  Google Scholar 

  • Wilson JS, Korobkin M, Genant HK, Bovill EG (1978) Computed tomography of musculoskeletal disorders. AJR Am J Roentgenol 131(1):55–61

    CAS  PubMed  Google Scholar 

  • Yu L, Pan X (2003) Half-scan fan-beam computed tomography with improved noise and resolution properties. Med Phys 30(10):2629–2637

    PubMed  Google Scholar 

  • Zhou C, Zhao YE, Luo S, Shi H, Li L, Zheng L et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18(10):1252–1257

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Blum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gondim Teixeira, P.A., Blum, A. (2017). Clinical Application of Musculoskeletal CT: Trauma, Oncology, and Postsurgery. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_25

Download citation

  • DOI: https://doi.org/10.1007/174_2017_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics