Skip to main content
Book cover

Dysphagia pp 687–716Cite as

Rheological Aspects of Swallowing and Dysphagia: Shear and Elongational Flows

  • Chapter
  • First Online:

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The physiological process of swallowing is not only a simple transfer of liquids or food boluses from the oral cavity to stomach, but also a complex succession of voluntary and involuntary phases that involve complex deformations and require the entire functionality of the oropharyngeal apparatus. When this functionality is affected, people experience dysphagia, which is described as a combination of symptoms that impairs or reduces patient’s ability to swallow.

On the other hand, food texture also plays an important role in swallowing. Each liquid viscosity or bolus consistency is processed differently in the mouth and it requires a specific amount of lubrication and effort in order to be easily and safely swallowed. The science of rheology deals specifically with the deformation and the flow of matter. Therefore, rheology helps to characterise food behaviour in complex deformations, such as those encountered during swallowing. The knowledge of the deformability and flow of the bolus is particularly important in understanding and managing dysphagia.

In this chapter, a short introduction on dysphagia is given. Section “Rheology Fundamentals” is dedicated to the science of rheology and provides a short description of the material functions relevant to this field. Dysphagia-designed products are used as examples. Section “Rheology, Swallowing and Dysphagia: State-of-the-Art” focuses on the rheological aspects of bolus oral processing and transport. A practical example on how shear rheology helps to tailor new dysphagia products is also included. Aspects about the role of extensional rheology in the swallowing are introduced. This section is followed by the rheological characterisation of different nutritional products in the presence of saliva. The role of human saliva in the management of dysphagia is as well discussed. The chapter ends with some concluding remarks.

This is a preview of subscription content, log in via an institution.

References

  • Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James D (2001) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45:83–114

    Article  CAS  Google Scholar 

  • Bardan E, Kern M, Arndorfer RC, Hofmann C, Shaker R (2006) Effect of aging on bolus kinematics during the pharyngeal phase of swallowing. Am J Physiol Gastrointest Liver Physiol 290:G458–G465

    Article  PubMed  CAS  Google Scholar 

  • Barnes HA (2000) A handbook of elementary Rheology. Institute of Non-Newtonian Fluid Mechanics, University of Wales, Aberystwyth

    Google Scholar 

  • Battagel J, Johal A, Smith AM, Kotecha B (2002) Postural variations in oropharyngeal dimensions in subjects with sleep disordered breathing—a cephalometric study. Eur J Orthodont 24:263–276

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  • Bredenoord AJ, Smout AJPM (2008) High resolution manometry. Digest Liver Dis 40:174–181

    Article  CAS  Google Scholar 

  • British Dietetic Association (2009) National descriptors for texture modification in adults. British Dietetic Association, Birmingham

    Google Scholar 

  • Brito-de la Fuente E, Quinchia L, Valencia C, Partal P, Franco JM, Gallegos C (2010) Rheology of a new spoon-thick consistency oral nutritional supplement (ONS) in comparison with a swallow barium test feed (SBTF). In: Proceedings Dysphagia Research Society 18th annual meeting, San Diego, CA, USA, 4–6 March 2010

    Google Scholar 

  • Brito-de la Fuente E, Staudinger-Prevost N, Quinchia L, Valencia C, Partal P, Franco JM, Gallegos C (2012) Design of a new spoon-thick consistency oral nutritionsupplement (ONS) using rheological similarity with a swallow barium test feed. Appl Rheol 22:53365

    Google Scholar 

  • Buettner A, Beer A, Hannig C, Settles M (2001) Observation of the swallowing process by applications of videfluoroscopy and real time magnetic resonance imaging—consequences for retronasal aroma stimulation. Chem Sens 26:1211–1219

    Article  CAS  Google Scholar 

  • Bülow M, Olsson R, Ekberg O (2003) Videoradiographic analysis of how carbonated thin liquids and thickened liquids affect the physiology of swallowing in subject with aspiration on thin liquids. Acta Radiol 44:366–372

    Article  PubMed  Google Scholar 

  • Burbidge AS, Cichero AYJ, Engmann J, Steele CM (2016) A day in the life of the fluid bolus: An introduction to fluid mechanics of the oropharyngeal phase of swallowing with particular focus on Dysphagia. Applied Rheology 26:64525

    Google Scholar 

  • Cabre M, Serra-Prat M, Palomera E, Almirall J, Pallares R, Clavé P (2010) Prevalence and prognostic implications of dysphagia in elderly patients with pneumonia. Age Ageing 39(1):39–45

    Article  PubMed  Google Scholar 

  • Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16:99–127

    Article  CAS  Google Scholar 

  • Carreau PJ, Dekee D, Chhabra RP (1997) Rheology of polymeric systems: principles and applications. Hanser, Munich

    Google Scholar 

  • Casanovas A, Hernández MJ, Martí-Bonmatí E (2011) Cluster classification of dysphagia-oriented products considering flow, thixotropy and oscillatory testing. Food Hydrocolloid 25(5):851–859

    Article  CAS  Google Scholar 

  • Chan PSK, Chen J, Rammile AE, Zerah AL, Stefan AA, Eddy AD, Smith AS (2007) Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures. Food Hydrocolloid 21:716–725

    Article  CAS  Google Scholar 

  • Chen J (2009) Food oral processing—a review. Food Hydrocolloid 23:1–25

    Article  CAS  Google Scholar 

  • Chhabra RP, Richardson JF (1999) Non-Newtonian flow in the process industries. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Choi H, Mitchell JR, Gaddipati SR, Hill SE, Wolf B (2014) Shear rheology and filament stretching behaviour of xanthan gum and carboxymethyl cellulose solution in presence of saliva. Food Hydrocolloid 40:71–75

    Article  CAS  Google Scholar 

  • Cichero JA, Steele C, Duivestein J, Clavé P, Chen J, Kayashita J, Dantas R, Lecko C, Speyer R, Lam P, Murray J (2013) The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: foundations of a global initiative. Curr Phys Med Rehabil Rep 1:280–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Cichero J, Lam P, Steele CM, Hanson B, Chen J, Dantas RO, Duivestein J et al (2017) Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: the IDDSI framework. Dysphagia 32(2):293–314

    Article  PubMed  Google Scholar 

  • Clasen C (2010) Capillary breakup extensional rheometry of semi-dilute polymer solutions. Korea Aust Rheol J 5:331–338

    Google Scholar 

  • Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH (2006) How dilute are dilute solutions in extensional flows. J Rheol 50:849–881

    Article  CAS  Google Scholar 

  • Clavé P, De Kraa M, Arreola V, Girvent M, Farré R, Palomera E, Serrat-Pratt M (2006) The effect of bolus viscosity on swallowing function in neurogénica dysphagia. Aliment Pharmacol Ther 24:1385–1394

    Article  PubMed  Google Scholar 

  • Dealy JM, Wissbrun KF (1995) Melt rheology and its role in plastic processing. Chapman and Hall, London

    Google Scholar 

  • Duxenneuner MR, Fischer P, Windhab EJ, Cooper-White JJ (2008) Extensional properties of hydroxypropyl ether guar gum solutions. Biomacromolecules 9:2989–2996

    Article  PubMed  CAS  Google Scholar 

  • Ekberg O, Bülow M, Ekman S, Hall G, Stading M, Wendin K (2009) Effect of barium sulfate contrast medium on rheology and sensory texture attributes in a model food. Acta Radiol 2:131–138

    Article  Google Scholar 

  • Emri I (2010) Time-dependent behaviour of solid polymers. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 247–330

    Google Scholar 

  • Engelen L, Fontijn-Tekamp A, van der Bilt A (2005) The influence of product and oral characteristics on swallowing. Arch Oral Biol 50:739–746

    Article  PubMed  Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Nonnewton Fluid Mech 72:31–53

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Foo WT, Yew HS, Liong MT, Azhar ME (2011) Influence of formulations on textural, mechanical and structural breakdown properties of cooked yellow alkaline noodles. Int Food Res J 18:1295–1301

    CAS  Google Scholar 

  • Frazier J, Chestnut AH, Jackson A, Barbon CEA, Steele CM, Pickler L (2016) Understanding the viscosity of liquids used in infant dysphagia management. Dysphagia 31(5):672–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller G, Cathey CA, Brent H, Zebrowski BE (1987) Extensional viscosity measurements for low-viscosity fluids. J Rheol 31(3):235–250

    Article  CAS  Google Scholar 

  • Gallegos C, Martínez-Boza FJ (2010) Linear viscoelasticity. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 120–143

    Google Scholar 

  • Gallegos C, Walters K (2010) Rheology. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS),UNESCO. Eolss, Oxford, pp 1–14

    Google Scholar 

  • Gallegos C, Quinchia L, Ascanio G, Salinas-Vázquez M, Brito-de la Fuente E (2012) Rheology and dysphagia: an overview. Ann T Nord Rheol Soc 20:3–10

    CAS  Google Scholar 

  • Gallegos C, Brito-de la Fuente E, Clavé P, Costa A, Assegehegn G (2017) Nutritional aspects of dysphagia management, Advances in food and nutrition research, vol 81. Academic Press, Cambridge, pp 271–318

    Google Scholar 

  • Germain I, Dufresne T, Ramaswamy HS (2006) Rheological characterization of thickened beverages used in the treatment of dysphagia. J Food Eng 73:64–74

    Article  Google Scholar 

  • Hanson B (2016) A review of diet standardization and bolus rheology in the management of dysphagia. Curr Opin Otolaryngol Head Neck Surg 24(3):183–190

    Article  PubMed  Google Scholar 

  • Hanson B, O’Leary MT, Smith CH (2012a) The effect of saliva on the viscosity of thickened drinks. Dysphagia 27:10–19

    Article  PubMed  Google Scholar 

  • Hanson B, Cox B, Kaliviotis E, Smith CH (2012b) Effects of saliva on starch-thickened drinks with acidic and neutral pH. Dysphagia 27(3):427–435

    Article  PubMed  Google Scholar 

  • Hasegawa A, Otogure A, Kumagai H, Nakazawa F (2005) Velocity of swallowed gel food in the pharynx by ultrasonic method. J Jpn Soc Food Sci Technol 52:441–447

    Article  Google Scholar 

  • Haward SJ, Odell JA, Berry M, Hall T (2011) Extensional rheology of human saliva. Rheol Acta 50:869–879

    Article  CAS  Google Scholar 

  • Hutchings JB, Lillford PJ (1988) The perception of food texture—the philosophy of the breakdown path. J Texture Stud 19:103–115

    Article  Google Scholar 

  • Ickenstein GW (2011) Diagnosis and treatment of neurogenic dysphagia. UNI-MED, Bremen

    Google Scholar 

  • Imam H, Shay S, Ali A, Baker M (2005) Bolus transit patterns in healthy subjects: a study using simultaneous impedance monitoring, videoesophagram, and esophageal manometry. Am J Physiol Gastrointest Liver Physiol 288:G1000–G1006

    Article  PubMed  CAS  Google Scholar 

  • Jaishankar A, Wee M, Matia-Merino L, Goh KKT, McKinley GH (2015) Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydr Polym 123:136–145

    Article  PubMed  CAS  Google Scholar 

  • James DF, Walters K (1993) A critical appraisal of available methods for the measurement of extensional properties of mobile systems. In: Collyer AA (ed) Techniques in rheological measurement. Chapmann and Hall, New York, pp 33–53

    Chapter  Google Scholar 

  • Kahrilas PJ, Dodds WJ, Hogan WJ (1988) Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology 94:73–80

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Oh B-M, Chun SM, Lee SH, Oh B-M, Chun SM, Lee JC, Min Y, Bang S-H, Han TR (2013) The accuracy of the swallowing kinematic analysis at various movement velocities of the hyoid and epiglottis. Ann Rehabil Med 37(3):320–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonard RJ, White C, McKenzie S, Belafsky PC (2014) Effects of bolus rheology on aspiration in patients with dysphagia. J Acad Nutr Diet 114:590–594

    Article  PubMed  Google Scholar 

  • Li M, Brasseur JG, Doods W (1994) Analyses of normal and abnormal esophageal transport using computer simulations. Am J Physiol Gastrointest Liver Physiol 266:G525–G543

    Article  CAS  Google Scholar 

  • Liang RF, Mackley MR (1994) Rheological characterization of the time and strain dependence for polyisobutylene solutions. J Nonnewton Fluid Mech 52:387–405

    Article  CAS  Google Scholar 

  • Mackay ME, Boger DV (1987) An explanation of the rheological properties of Boger fluids. J Nonnewton Fluid Mech 22:235–243

    Article  CAS  Google Scholar 

  • Mackley MR, Marshall RTJ, Smeulders JB, Zhao FD (1994) The rheological characterization of polymeric and colloidal fluids. Chem Eng Sci 49:2551–2565

    Article  CAS  Google Scholar 

  • Mackley MR, Tock C, Anthony R, Butler SA, Chapman G, Vadillo DC (2013) The rheology and processing behavior of starch and gum-based dysphagia thickeners. J Rheol 57:1533

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology principles, measurements and applications. VCH, New York

    Google Scholar 

  • Madiedo JM, Gallegos C (1997a) Rheological characterization of oil-in-water emulsions by means of relaxation and retardation spectra. Recent Res Devel Oil Chem 1:79–90

    Google Scholar 

  • Madiedo JM, Gallegos C (1997b) Rheological characterization of oil-in-water food emulsions by means of relaxation and retardation spectra. Appl Rheol 7:161–167

    CAS  Google Scholar 

  • McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44:653

    Article  CAS  Google Scholar 

  • McKinley GH, Anna SL, Tripathi A, Yao M (1999) Extensional rheometry of polymeric fluids and the uniaxial elongation of viscoelastic filaments. Int Polym Proc Soc:1–14

    Google Scholar 

  • Meng Y, Rao MA, Datta AK (2005) Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Food Bioprod Proc 83:297–305

    Article  Google Scholar 

  • Miller E, Clasen C, Rothstein JP (2009) The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol Acta 48:625–639

    Article  CAS  Google Scholar 

  • Mizunuma H, Sonomura M, Shimokasa K, Ogoshp H, Nakamura S, Tayama N (2009) Numerical modelling and simulation on the swallowing of jelly. J Text Stud 40:406–426

    Article  Google Scholar 

  • Morell Esteve P, Hernando MI, Fiszman MS (2014) Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends Food Sci Technol 35:18–31

    Article  CAS  Google Scholar 

  • National Dysphagia Diet Task Force (2002) National dysphagia diet: standardization for optimal care. American Dietetic Association, Chicago

    Google Scholar 

  • Newman R, Vilardell N, Clavé P, Speyer R (2016) Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the european society for swallowing disorders (ESSD). Dysphagia 31:232–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen HN, Silny J, Albers D, Roeb E, Gartung C, Rau G, Metern S (1997) Dynamics of esophageal bolus transport in heathy subjects studied using multiple intraluminal impedancometry. Am J Physiol Gastrointest Liver Physiol 273:G958–G964

    Article  CAS  Google Scholar 

  • Nicosia MA, Robbins J (2001) The fluid mechanics of bolus ejection from the oral cavity. J Biomech 34:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Nyström M (2015) Extensional rheometry through hyperbolic contraction. PhD dissertation, Chalmers University of Technology

    Google Scholar 

  • Nyström M, Waqas M, Bulow M, Ekberg O, Stading M (2015) Effects of rheological factors on perceived ease of swallowing. Appl Rheol 25:63876

    Google Scholar 

  • O’Leary M, Hanson B, Smith C (2010) Viscosity and non-Newtonian features of thickened fluids used for dysphagia therapy. J Food Sci 75(6):E330–E338

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MSN, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. J Nonnewton Fluid Mech 137:137–148

    Article  CAS  Google Scholar 

  • Omari TI, Rommel N, Szczesniak M, Fuentealba S, Dinning P, Davidson G, Cook I (2006) Assessment of intraluminal impedance for the detection of pharyngeal bolus flow during swallowing in healthy adults. Am J Physiol Gastrointest Liver Physiol 290:G183–G188

    Article  PubMed  CAS  Google Scholar 

  • Ould-Eleya M, Gunasekaran S (2007) Rheology of barium sulfate suspensions and pre-thickened beverages used in diagnosis and treatment of dysphagia. Appl Rheol 17:33137-1–33137-8

    Google Scholar 

  • Papageorgiou DT (1995) On the breakup of viscous-liquid threads. Phys Fluids 7(7):1529–1544

    Article  CAS  Google Scholar 

  • Partal P, Franco JM (2010) Non-Newtonian fluids. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 96–119

    Google Scholar 

  • Patruyo L, Muller A, Saez A (2002) Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulphate. Polymer 43:6481–6493

    Article  CAS  Google Scholar 

  • Penman JP, Thomson M (1998) A review of the textured diets developed for the management of dysphagia. J Human Nutr Diet 11:51–60

    Article  Google Scholar 

  • Petrie CJS (2006a) Extensional viscosity: a critical discussion. J Nonnewton Fluid Mech 137:15–23

    Article  CAS  Google Scholar 

  • Petrie CJS (2006b) One hundred years of extensional flow. J Nonnewton Fluid Mech 137:1–14

    Article  CAS  Google Scholar 

  • Phan-Thien N (2002) Understanding viscoelasticity: basics of rheology. Springer, Berlin

    Book  Google Scholar 

  • Popa Nita S, Murith M, Chisholm H, Engmann J (2013) Matching the rheological properties of videofluoroscopic contrast agents and thickened liquid prescriptions. Dysphagia 28(2):245–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prinz JF, Lucas PW (1997) An optimization model for mastication and swallowing in mammals. Proc Biol Sci 264:1715–1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinchia LA, Valencia C, Partal P, Franco JM, Brito-de la Fuente E, Gallegos C (2011) Linear and non-linear viscoelasticity of puddings for nutritional management of dysphagia. Food Hydrocolloid 25:586–593

    Article  CAS  Google Scholar 

  • Reiner M (1964) The Deborah number. Phys Today 17:62

    Article  Google Scholar 

  • Reyes-Ocampo I, Aguayo-Vallejo JP, Ascanio G, Córdova-Aguilar MS (2017) Rheological characterization of modified foodstuffs with food grade thickening agents. J Phys Conf Ser 790:012028

    Article  CAS  Google Scholar 

  • Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH (2005) The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro fabricated geometries. J Non-Newtonian Fluid Mech 129:1–22

    Article  CAS  Google Scholar 

  • Rolón-Garrido V, Wagner M (2009) The damping function in rheology. Rheol Acta 48:245–284

    Article  CAS  Google Scholar 

  • Sachsenheimer D (2014) Capillary thinning of viscoelastic fluid filaments. PhD dissertation, Karlsruhe Institute of Technology

    Google Scholar 

  • Sajjadi B, Raman AAA, Shah RSSRE, Ibrahim S (2013) Review on applicable breakup/coalescence models in turbulent liquid-liquid flows. Rev Chem Eng 29:131–158

    Article  CAS  Google Scholar 

  • Sopade PA, Halley PJ, Cichero JAY, Ward LC (2007) Rheological characterisation of food thickeners marketed in Australia in various media for the management of dysphagia. I: water and cordial. J Food Eng 79:69–82

    Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newtonian Fluid Mech 40:271–280

    Article  CAS  Google Scholar 

  • Srinivasan R, Vela MF, Kartz PO, Tutuian R, Castell JA, Castell DO (2001) Esophageal function testing using multichannel intraluminal impredance. Am J Physiol Gastrointest Liver Physiol 280:G457–G462

    Article  PubMed  CAS  Google Scholar 

  • Stading M, Johansson D, Wendin K (2008) Rheological properties of food for patients with swallowing disorders. Annu Trans Nord Rheol Soc 16:5401

    Google Scholar 

  • Steele CM (2005) Searching for meaningful differences in viscosity. Dysphagia 20:336–338

    Article  PubMed  Google Scholar 

  • Steele CM, Cichero JA (2008) A question of rheological control. Dysphagia 23:199–201

    Article  PubMed  Google Scholar 

  • Steele CM, Lieshout PHHM, Goff HD (2003) The rheology of liquids: a comparison of clinician’s subjective impression and objective measurement. Dysphagia 18:182–195

    Article  PubMed  Google Scholar 

  • Steele CM, Molfenter SM, Péladeau-Pigeon M, Stokely S (2013) Challenges in preparing contrast media for videofluoroscopy. Dysphagia 28(3):464–467

    Article  PubMed  PubMed Central  Google Scholar 

  • Steele CM, Alsanei WA, Ayanikalath S, Barbon CEA, Chen J, Chichero JA (2015) The influence of food textures and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia 30:2–26

    Article  PubMed  Google Scholar 

  • Takasaki K, Umeki H, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H (2008) Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope 118(10):1729–1732

    Article  PubMed  Google Scholar 

  • Tirtaatmadja V, Sridhar T (1993) A filament stretching device for measurement of extensional viscosity. J Rheol 37:1081–1102

    Article  CAS  Google Scholar 

  • Tirtaatmadja V, McKinley GH, Cooper-White JJ (2006) Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18:043101

    Article  CAS  Google Scholar 

  • Torres MD, Hallmark B, Wilson DI (2014) Effect of concentration on shear and extensional rheology of guar gum solutions. Food Hydrocolloid 40:85–95

    Article  CAS  Google Scholar 

  • Trouton FT (1906) On the coefficient of viscous traction and its relation to that of viscosity. Proc R Soc A 77:426–439

    Article  Google Scholar 

  • Turcanu M (2017) Rheological characterization and modelling of fluids used in biomedical engineering. PhD dissertation, Politehnica University of Bucharest

    Google Scholar 

  • Turcanu M, Tascon LF, Balan C, Gallegos C (2015a) Capillary breakup extensional properties of whole human saliva. In: 9th International Symposium on Advanced Topics in Electrical Engineering 269–274

    Google Scholar 

  • Turcanu M, Siegert N, Tascon LF, Omocea I, Balan C, Gallegos C, Brito-de la Fuente E (2015b) The role of human saliva on the elongational properties of a starch-based food product. Proceedings of E-Health and Bioengineering Conference (EHB) 1–4

    Google Scholar 

  • Wagner MH (1979) Zur Netzwerktheorie von Polymer-Schmelzen. Rheol Acta 18:33–50

    Article  CAS  Google Scholar 

  • Walters K (2010) History of rheology. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 15–30

    Google Scholar 

  • Waqas MQ, Wiklund J, Altskär A, Ekberg O, Stading M (2017) Shear and extensional rheology of commercial thickeners used for dysphagia management. J Texture Stud 00:1–11. doi:10.1111/jtxs.12264

    Article  Google Scholar 

  • Williams RB, Pal A, Brasseur G, Cook I (2001) Space-time pressure structure of pharyngo-esophageal segment during swallowing. Am J Gastrointest Liver Physiol 281:G1290–G1300

    Article  CAS  Google Scholar 

  • Zargaraan A, Rastmanesh R, Fadavi G, Zayeri F, Mohammadifar MA (2013) Rheological aspects of dysphagia-oriented food products: a mini review. Food Sci Hum Wellness 2:173–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmundo Brito-de la Fuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

la Fuente, E.Bd., Turcanu, M., Ekberg, O., Gallegos, C. (2017). Rheological Aspects of Swallowing and Dysphagia: Shear and Elongational Flows. In: Ekberg, O. (eds) Dysphagia. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_119

Download citation

  • DOI: https://doi.org/10.1007/174_2017_119

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68571-7

  • Online ISBN: 978-3-319-68572-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics