Skip to main content

The Structure and Classification of Botulinum Toxins

  • Chapter
  • First Online:
Botulinum Toxin Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 263))

Abstract

Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S (2009) Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol 16(7):789–794

    CAS  PubMed  Google Scholar 

  • Amatsu S, Sugawara Y, Matsumura T, Kitadokoro K, Fujinaga Y (2013) Crystal structure of Clostridium botulinum whole hemagglutinin reveals a huge triskelion-shaped molecular complex. J Biol Chem 288(49):35617–35625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28(14):3689–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. Biochemistry 44(28):9574–9580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arndt JW, Chai Q, Christian T, Stevens RC (2006) Structure of botulinum neurotoxin type D light chain at 1.65 Å resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 45(10):3255–3262

    CAS  PubMed  Google Scholar 

  • Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209(2):183–191

    CAS  PubMed  Google Scholar 

  • Benoit RM, Frey D, Hilbert M, Kevenaar JT, Wieser MM, Stirnimann CU, McMillan D, Ceska T, Lebon F, Jaussi R, Steinmetz MO, Schertler GF, Hoogenraad CC, Capitani G, Kammerer RA (2014) Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 505(7481):108–111

    PubMed  Google Scholar 

  • Benoit RM, Scharer MA, Wieser MM, Li X, Frey D, Kammerer RA (2017) Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Sci Rep 7:43588

    PubMed  PubMed Central  Google Scholar 

  • Benson MA, Fu Z, Kim JJ, Baldwin MR (2011) Unique ganglioside recognition strategies for clostridial neurotoxins. J Biol Chem 286(39):34015–34022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berntsson RP, Peng L, Dong M, Stenmark P (2013) Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 4:2058

    PubMed  PubMed Central  Google Scholar 

  • Bomba-Warczak E, Vevea JD, Brittain JM, Figueroa-Bernier A, Tepp WH, Johnson EA, Yeh FL, Chapman ER (2016) Interneuronal transfer and distal action of tetanus toxin and botulinum neurotoxins A and D in central neurons. Cell Rep 16(7):1974–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432(7019):925–929

    CAS  PubMed  Google Scholar 

  • Brunt J, Carter AT, Stringer SC, Peck MW (2018) Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett 592(3):310–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke GS (1919a) Notes on Bacillus botulinus. J Bacteriol 4(5):555–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke GS (1919b) The occurrence of Bacillus botulinus in nature. J Bacteriol 4(5):541–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444(7122):1096–1100

    CAS  PubMed  Google Scholar 

  • Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR (2010) Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 137(20):3489–3499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, Chen J, Stenmark P, Gill SS (2019) A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 10(1):2869

    PubMed  PubMed Central  Google Scholar 

  • Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162(7):1293–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312(5773):592–596

    CAS  PubMed  Google Scholar 

  • Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19(12):5226–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong M, Masuyer G, Stenmark P (2019) Botulinum and tetanus neurotoxins. Annu Rev Biochem 88:811–837

    CAS  PubMed  Google Scholar 

  • Dover N, Barash JR, Hill KK, Xie G, Arnon SS (2014) Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209(2):192–202

    CAS  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De Grandis D (1997) Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224(2):91–94

    CAS  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256(3):135–138

    CAS  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C, Dressler D (2006) Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9(2–3):127–131

    CAS  PubMed  Google Scholar 

  • Elliott M, Favre-Guilmard C, Liu SM, Maignel J, Masuyer G, Beard M, Boone C, Carre D, Kalinichev M, Lezmi S, Mir I, Nicoleau C, Palan S, Perier C, Raban E, Zhang S, Dong M, Stenmark P, Krupp J (2019) Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. Sci Adv 5(1):eaau7196

    PubMed  PubMed Central  Google Scholar 

  • Eswaramoorthy S, Sun J, Li H, Singh BR, Swaminathan S (2015) Molecular Assembly of Clostridium botulinum progenitor M complex of type E. Sci Rep 5:17795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Sambashivan S, Brunger AT, Montal M (2012) Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 287(3):1657–1661

    CAS  PubMed  Google Scholar 

  • Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278(2):1363–1371

    CAS  PubMed  Google Scholar 

  • Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276(34):32274–32281

    CAS  PubMed  Google Scholar 

  • Gimenez DF, Ciccarelli AS (1970) Another type of Clostridium botulinum. Zentralbl Bakteriol Orig 215(2):221–224

    CAS  PubMed  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335(6071):977–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson R, Berntsson RP, Martinez-Carranza M, El Tekle G, Odegrip R, Johnson EA, Stenmark P (2017) Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 591(22):3781–3792

    CAS  PubMed  Google Scholar 

  • Gustafsson R, Zhang S, Masuyer G, Dong M, Stenmark P (2018) Crystal structure of botulinum neurotoxin A2 in complex with the human protein receptor SV2C reveals plasticity in receptor binding. Toxins 10(4):E153

    PubMed  Google Scholar 

  • Hamark C, Berntsson RP, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G (2017) Glycans confer specificity to the recognition of ganglioside receptors by botulinum neurotoxin A. J Am Chem Soc 139(1):218–230

    CAS  PubMed  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189(3):818–832

    CAS  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643

    CAS  PubMed  Google Scholar 

  • Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444(7122):1092–1095

    CAS  PubMed  Google Scholar 

  • Jin R, Sikorra S, Stegmann CM, Pich A, Binz T, Brunger AT (2007) Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry 46(37):10685–10693

    CAS  PubMed  Google Scholar 

  • Johnson EA (1999) Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu Rev Microbiol 53:551–575

    CAS  PubMed  Google Scholar 

  • Kalb SR, Baudys J, Webb RP, Wright P, Smith TJ, Smith LA, Fernandez R, Raphael BH, Maslanka SE, Pirkle JL, Barr JR (2012) Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett 586(2):109–115

    CAS  PubMed  Google Scholar 

  • Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456(1):137–142

    CAS  PubMed  Google Scholar 

  • Kosenina S, Masuyer G, Zhang S, Dong M, Stenmark P (2019) Crystal structure of the catalytic domain of the Weissella oryzae botulinum-like toxin. FEBS Lett 593(12):1403–1410

    CAS  PubMed  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386(1):233–245

    CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5(10):898–902

    CAS  PubMed  Google Scholar 

  • Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11(9):431–437

    CAS  PubMed  Google Scholar 

  • Lam KH, Guo Z, Krez N, Matsui T, Perry K, Weisemann J, Rummel A, Bowen ME, Jin R (2018a) A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 9(1):5367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KH, Qi R, Liu S, Kroh A, Yao G, Perry K, Rummel A, Jin R (2018b) The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon 147:19–26

    CAS  PubMed  Google Scholar 

  • Lamanna C, Mc EO, Eklund HW (1946) The purification and crystallization of Clostridium botulinum type A toxin. Science 103(2681):613

    CAS  PubMed  Google Scholar 

  • Lebeda FJ, Olson MA (1995) Structural predictions of the channel-forming region of botulinum neurotoxin heavy chain. Toxicon 33(4):559–567

    CAS  PubMed  Google Scholar 

  • Lee K, Gu S, Jin L, Le TT, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R (2013) Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 9(10):e1003690

    PubMed  PubMed Central  Google Scholar 

  • Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K, Rummel A, Dong M, Jin R (2014) Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 344(6190):1405–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leuchs J (1910) Beitraege zur kenntnis des toxins und antitoxins des Bacillus botulinus. Z Hyg Infekt 76:55–84

    Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580(8):2011–2014

    CAS  PubMed  Google Scholar 

  • Mahrhold S, Strotmeier J, Garcia-Rodriguez C, Lou J, Marks JD, Rummel A, Binz T (2013) Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. Biochem J 453(1):37–47

    CAS  PubMed  Google Scholar 

  • Mahrhold S, Bergstrom T, Stern D, Dorner BG, Astot C, Rummel A (2016) Only the complex N559-glycan in the synaptic vesicle glycoprotein 2C mediates high affinity binding to botulinum neurotoxin serotype A1. Biochem J 473(17):2645–2654

    CAS  PubMed  Google Scholar 

  • Mansfield MJ, Adams JB, Doxey AC (2015) Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett 589(3):342–348

    CAS  PubMed  Google Scholar 

  • Mansfield MJ, Wentz TG, Zhang S, Lee EJ, Dong M, Sharma SK, Doxey AC (2019) Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci Rep 9(1):1634

    PubMed  PubMed Central  Google Scholar 

  • Maslanka SE, Luquez C, Dykes JK, Tepp WH, Pier CL, Pellett S, Raphael BH, Kalb SR, Barr JR, Rao A, Johnson EA (2016) A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and is neutralized with serotype A antitoxin. J Infect Dis 213(3):379–385

    CAS  PubMed  Google Scholar 

  • Masuyer G, Conrad J, Stenmark P (2017) The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep 18(8):1306–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masuyer G, Zhang S, Barkho S, Shen Y, Henriksson L, Kosenina S, Dong M, Stenmark P (2018) Structural characterisation of the catalytic domain of botulinum neurotoxin X – high activity and unique substrate specificity. Sci Rep 8(1):4518

    PubMed  PubMed Central  Google Scholar 

  • Matsumura T, Sugawara Y, Yutani M, Amatsu S, Yagita H, Kohda T, Fukuoka S, Nakamura Y, Fukuda S, Hase K, Ohno H, Fujinaga Y (2015) Botulinum toxin A complex exploits intestinal M cells to enter the host and exert neurotoxicity. Nat Commun 6:6255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29(15):4981–4992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    CAS  PubMed  Google Scholar 

  • Montal MS, Blewitt R, Tomich JM, Montal M (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 313(1):12–18

    CAS  PubMed  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trens Biochem Sci 11(8):314–317

    CAS  Google Scholar 

  • Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K, Ogumad K (1996a) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta 1307(2):123–126

    PubMed  Google Scholar 

  • Moriishi K, Koura M, Fujii N, Fujinaga Y, Inoue K, Syuto B, Oguma K (1996b) Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl Environ Microbiol 62(2):662–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz MS, Tepp WH, Bradshaw M, Johnson EA, Pellett S (2018) Isolation and characterization of the novel Botulinum neurotoxin A subtype 6. mSphere 3(5):e00466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269(14):10498–10503

    CAS  PubMed  Google Scholar 

  • Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Sudhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26(52):13493–13504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindstrom M, Lista F, Luquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC (2017) Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 9(1):38

    PubMed Central  Google Scholar 

  • Pellett S, Tepp WH, Whitemarsh RC, Bradshaw M, Johnson EA (2015) In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon 107(Pt A):37–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Bradshaw M, Tepp WH, Pier CL, Whitemarsh RCM, Chen C, Barbieri JT, Johnson EA (2018) The light chain defines the duration of action of botulinum toxin serotype A subtypes. MBio 9(2). pii: e00089-18

    Google Scholar 

  • Peng L, Berntsson RP, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M (2012) Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 125(Pt 13):3233–3242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfenninger W (1924) Toxico, immunologic and serologic relationship of B. botulinus, type C and B. parabotulinus. J Infect Dis 35:347–352

    CAS  Google Scholar 

  • Pier CL, Chen C, Tepp WH, Lin G, Janda KD, Barbieri JT, Pellett S, Johnson EA (2011) Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett 585(1):199–206

    CAS  PubMed  Google Scholar 

  • Pirazzini M, Rossetto O, Eleopra R, Montecucco C (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69(2):200–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M (2011) Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci 31(44):15650–15659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Restani L, Giribaldi F, Manich M, Bercsenyi K, Menendez G, Rossetto O, Caleo M, Schiavo G (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8(12):e1003087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossetto O, Pirazzini M, Montecucco C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12(8):535–549

    CAS  PubMed  Google Scholar 

  • Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326(3):835–847

    CAS  PubMed  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51(3):631–643

    CAS  PubMed  Google Scholar 

  • Schantz EJ, Johnson EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56(1):80–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992a) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359(6398):832–835

    CAS  PubMed  Google Scholar 

  • Schiavo G, Poulain B, Rossetto O, Benfenati F, Tauc L, Montecucco C (1992b) Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 11(10):3577–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson LL, Rapport MM (1971) Ganglioside inactivation of botulinum toxin. J Neurochem 18(7):1341–1343

    CAS  PubMed  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4(8):e1000129

    PubMed  PubMed Central  Google Scholar 

  • Strotmeier J, Willjes G, Binz T, Rummel A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586(4):310–313

    CAS  PubMed  Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    PubMed  PubMed Central  Google Scholar 

  • Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M, Fujinaga Y (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189(4):691–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surana S, Tosolini AP, Meyer IFG, Fellows AD, Novoselov SS, Schiavo G (2018) The travel diaries of tetanus and botulinum neurotoxins. Toxicon 147:58–67

    CAS  PubMed  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7(8):693–699

    CAS  PubMed  Google Scholar 

  • Tao L, Peng L, Berntsson RP, Liu SM, Park S, Yu F, Boone C, Palan S, Beard M, Chabrier PE, Stenmark P, Krupp J, Dong M (2017) Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 8:53

    PubMed  PubMed Central  Google Scholar 

  • Torii Y, Kiyota N, Sugimoto N, Mori Y, Goto Y, Harakawa T, Nakahira S, Kaji R, Kozaki S, Ginnaga A (2011) Comparison of effects of botulinum toxin subtype A1 and A2 using twitch tension assay and rat grip strength test. Toxicon 57(1):93–99

    CAS  PubMed  Google Scholar 

  • Tsai YC, Kotiya A, Kiris E, Yang M, Bavari S, Tessarollo L, Oyler GA, Weissman AM (2017) Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc Natl Acad Sci U S A 114(26):E5158–E5166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vagin O, Tokhtaeva E, Garay PE, Souda P, Bassilian S, Whitelegge JP, Lewis R, Sachs G, Wheeler L, Aoki R, Fernandez-Salas E (2014) Recruitment of septin cytoskeletal proteins by botulinum toxin A protease determines its remarkable stability. J Cell Sci 127(Pt 15):3294–3308

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Ermengem E (1897) Ueber Einem Neuen anaeroben Bacillus und seine Beziehungen zum Botulismus. Z Hyg Infekt 26:1–56

    Google Scholar 

  • Whitemarsh RC, Tepp WH, Bradshaw M, Lin G, Pier CL, Scherf JM, Johnson EA, Pellett S (2013) Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect Immun 81(10):3894–3902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitemarsh RC, Tepp WH, Johnson EA, Pellett S (2014) Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One 9(2):e90252

    PubMed  PubMed Central  Google Scholar 

  • Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R (2016) N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 23(7):656–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D, Henriksson L, Miyashita SI, Martinez-Carranza M, Dong M, Stenmark P (2017) Identification and characterization of a novel botulinum neurotoxin. Nat Commun 8:14130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Lebreton F, Mansfield MJ, Miyashita SI, Zhang J, Schwartzman JA, Tao L, Masuyer G, Martinez-Carranza M, Stenmark P, Gilmore MS, Doxey AC, Dong M (2018) Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 23(2):169–176 e166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zornetta I, Azarnia Tehran D, Arrigoni G, Anniballi F, Bano L, Leka O, Zanotti G, Binz T, Montecucco C (2016) The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep 6:30257

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jonathan Davies for preparing all figures and for valuable discussions during the preparation of this chapter. This work was supported by the Swedish Research Council and the Swedish Cancer Society to P.S. and by grants from NIH (R01NS080833, R01AI132387, R01AI139087, and R21NS106159), Intelligence Advanced Research Projects Activity (IARPA, grant number W911NF-17-2-0089), and the Investigator in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund to M.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Dong or Pål Stenmark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, M., Stenmark, P. (2019). The Structure and Classification of Botulinum Toxins. In: Whitcup, S.M., Hallett, M. (eds) Botulinum Toxin Therapy. Handbook of Experimental Pharmacology, vol 263. Springer, Cham. https://doi.org/10.1007/164_2019_342

Download citation

Publish with us

Policies and ethics