Skip to main content

Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 246))

Abstract

The voltage-gated sodium (Nav) channel Nav1.7 has been the focus of intense investigation in recent years. Human genetics studies of individuals with gain-of-function and loss-of-function mutations in the Nav1.7 channel have implicated Nav1.7 as playing a critical role in pain. Therefore, selective inhibition of Nav1.7 represents a potentially new analgesic strategy that is expected to be devoid of the significant liabilities associated with available treatment options. Although the identification and development of selective Nav channel modulators have historically been challenging, a number of recent publications has demonstrated progression of increasingly subtype-selective small molecules and peptides toward potential use in preclinical or clinical studies. In this respect, we focus on three binding sites that appear to offer the highest potential for the discovery and optimization of Nav1.7-selective inhibitors: the extracellular vestibule of the pore, the extracellular loops of voltage-sensor domain II (VSD2), and the extracellular loops of voltage-sensor domain IV (VSD4). Notably, these three receptor sites on Nav1.7 can all be defined as extracellular druggable sites, suggesting that non-small molecule formats are potential therapeutic options. In this chapter, we will review specific considerations and challenges underlying the identification and optimization of selective, potential therapeutics targeting Nav1.7 for chronic pain indications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelsayed M, Sokolov S (2013) Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes. Channels (Austin) 7:146–152

    Article  CAS  Google Scholar 

  • Abriel H, Kass RS (2005) Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends Cardiovasc Med 15:35–40

    Article  PubMed  CAS  Google Scholar 

  • Agwa AJ, Huang YH, Craik DJ, Henriques ST, Schroeder CI (2017a) Lengths of the C-terminus and interconnecting loops impact stability of spider-derived gating modifier toxins. Toxins (Basel) 9:248

    Article  Google Scholar 

  • Agwa AJ, Lawrence N, Deplazes E, Cheneval O, Chen RM, Craik DJ, Schroeder CI, Henriques ST (2017b) Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNaV1.7. Biochim Biophys Acta 1859:835–844

    Article  CAS  Google Scholar 

  • Ahern CA, Eastwood AL, Dougherty DA, Horn R (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102:86–94

    Article  PubMed  CAS  Google Scholar 

  • Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147:1–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, Meijer IA, Meury L, Mills T, Moody A et al (2007) A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet 16:2114–2121

    Article  PubMed  CAS  Google Scholar 

  • Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, Shriver S, Young C, Lin S, Johnson JP Jr et al (2015) Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350:aac5464

    Article  PubMed  CAS  Google Scholar 

  • Alexandrou AJ, Brown AR, Chapman ML, Estacion M, Turner J, Mis MA, Wilbrey A, Payne EC, Gutteridge A, Cox PJ et al (2016) Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS One 11:e0152405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1973) Currents related to movement of the gating particles of the sodium channels. Nature 242:459–461

    Article  PubMed  CAS  Google Scholar 

  • Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA (2015) Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9:360–366

    Article  Google Scholar 

  • Bagneris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci U S A 111:8428–8433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barhanin J, Pauron D, Lombet A, Norman RI, Vijverberg HP, Giglio JR, Lazdunski M (1983) Electrophysiological characterization, solubilization and purification of the Tityus γ toxin receptor associated with the gating component of the Na+ channel from rat brain. EMBO J 2:915–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beneski DA, Catterall WA (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci U S A 77:639–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    Article  PubMed  CAS  Google Scholar 

  • Biswas K, Nixey TE, Murray JK, Falsey JR, Yin L, Liu H, Gingras J, Hall BE, Herberich B, Holder JR et al (2017) Engineering antibody reactivity for efficient derivatization to generate NaV1.7 inhibitory GpTx-1 peptide-antibody conjugates. ACS Chem Biol 12:2427–2435

    Article  PubMed  CAS  Google Scholar 

  • Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG (1996) Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Brain Res Mol Brain Res 43:117–131

    Article  PubMed  CAS  Google Scholar 

  • Black JA, Frezel N, Dib-Hajj SD, Waxman SG (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosmans F, Swartz KJ (2010) Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci 31:175–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456:202–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brady RM, Zhang M, Gable R, Norton RS, Baell JB (2013) De novo design and synthesis of a μ-conotoxin KIIIA peptidomimetic. Bioorg Med Chem Lett 23:4892–4895

    Article  PubMed  CAS  Google Scholar 

  • Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM (2016) Near-perfect synaptic integration by Nav1.7 in hypothalamic neurons regulates body weight. Cell 165:1749–1761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brouwer BA, Merkies IS, Gerrits MM, Waxman SG, Hoeijmakers JG, Faber CG (2014) Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst 19:53–65

    Article  PubMed  CAS  Google Scholar 

  • Campos FV, Chanda B, Beirao PS, Bezanilla F (2008) α-Scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. J Gen Physiol 132:251–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cannon SC (2010) Voltage-sensor mutations in channelopathies of skeletal muscle. J Physiol 588:1887–1895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142:101–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardoso FC, Dekan Z, Rosengren KJ, Erickson A, Vetter I, Deuis JR, Herzig V, Alewood PF, King GF, Lewis RJ (2015) Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol Pharmacol 88:291–303

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1976) Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore. J Biol Chem 251:5528–5536

    PubMed  CAS  Google Scholar 

  • Catterall WA (1977) Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalyzed iodination. J Biol Chem 252:8660–8668

    PubMed  CAS  Google Scholar 

  • Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005a) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005b) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–141

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA (1998) Voltage sensor-trapping: enhanced activation of sodium channels by β-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21:919–931

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Scheuer T, Mantegazza M, Rochat H, Catterall WA (2001) Neutralization of gating charges in domain II of the sodium channel α subunit enhances voltage-sensor trapping by a β-scorpion toxin. J Gen Physiol 118:291–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cestele S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA (2006) Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin. J Biol Chem 281:21332–21344

    Article  PubMed  CAS  Google Scholar 

  • Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezanilla F (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22:73–87

    Article  PubMed  CAS  Google Scholar 

  • Chahine M, O’Leary ME (2011) Regulatory role of voltage-gated Na channel β subunits in sensory neurons. Front Pharmacol 2:70

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chanda B, Asamoah OK, Bezanilla F (2004) Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J Gen Physiol 123:217–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F (2005) Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856

    Article  PubMed  CAS  Google Scholar 

  • Chow CY, Cristofori-Armstrong B, Undheim EA, King GF, Rash LD (2015) Three peptide modulators of the human voltage-gated sodium channel 1.7, an important analgesic target, from the venom of an Australian tarantula. Toxins (Basel) 7:2494–2513

    Article  CAS  Google Scholar 

  • Clairfeuille T, Xu H, Koth CM, Payandeh J (2017) Voltage-gated sodium channels viewed through a structural biology lens. Curr Opin Struct Biol 45:74–84

    Article  PubMed  CAS  Google Scholar 

  • Cohen CJ, Bean BP, Colatsky TJ, Tsien RW (1981) Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. Interactions between toxin binding and channel gating. J Gen Physiol 78:383–411

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Ilan N, Gur M, Stuhmer W, Gordon D, Gurevitz M (2007) Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem 282:29424–29430

    Article  PubMed  CAS  Google Scholar 

  • Couraud F, Rochat H, Lissitzky S (1978) Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem Biophys Res Commun 83:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Couraud F, Jover E, Dubois JM, Rochat H (1982) Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20:9–16

    Article  PubMed  CAS  Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox JJ, Sheynin J, Shorer Z, Reimann F, Nicholas AK, Zubovic L, Baralle M, Wraige E, Manor E, Levy J et al (2010) Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat 31:E1670–E1686

    Article  PubMed  CAS  Google Scholar 

  • Cummins TR, Howe JR, Waxman SG (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18:9607–9619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Das S, Gilchrist J, Bosmans F, Van Petegem F (2016) Binary architecture of the Nav1.2-β2 signaling complex. Elife. 2016;5. pii: e10960

    Google Scholar 

  • de Lera Ruiz M, Kraus RL (2015) Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem 58:7093–7118

    Article  PubMed  CAS  Google Scholar 

  • Deuis JR, Wingerd JS, Winter Z, Durek T, Dekan Z, Sousa SR, Zimmermann K, Hoffmann T, Weidner C, Nassar MA et al (2016) Analgesic effects of GpTx-1, PF-04856264 and CNV1014802 in a mouse model of NaV1.7-mediated pain. Toxins (Basel). 201;8(3). pii: E78

    Article  PubMed Central  CAS  Google Scholar 

  • Deuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR, Bhola RF, Imlach WL, Herzig V, Armstrong DA, Rosengren KJ et al (2017) Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Sci Rep 7:40883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95:8963–8968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325–347

    Article  PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Yang Y, Black JA, Waxman SG (2013) The NaV1.7 sodium channel: from molecule to man. Nat Rev Neurosci 14:49–62

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51:1650–1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer TZ, Waxman SG (2010) Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann N Y Acad Sci 1184:196–207

    Article  PubMed  CAS  Google Scholar 

  • Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA, Freedman J, Eckert WA et al (2017) Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep 7:39662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Focken T, Liu S, Chahal N, Dauphinais M, Grimwood ME, Chowdhury S, Hemeon I, Bichler P, Bogucki D, Waldbrook M et al (2016) Discovery of aryl sulfonamides as isoform-selective inhibitors of NaV1.7 with efficacy in rodent pain models. ACS Med Chem Lett 7:277–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fozzard HA, Sheets MF, Hanck DA (2011) The sodium channel as a target for local anesthetic drugs. Front Pharmacol 2:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • French RJ, Yoshikami D, Sheets MF, Olivera BM (2010) The tetrodotoxin receptor of voltage-gated sodium channels – perspectives from interactions with μ-conotoxins. Mar Drugs 8:2153–2161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fry M, Boegle AK, Maue RA (2007) Differentiated pattern of sodium channel expression in dissociated Purkinje neurons maintained in long-term culture. J Neurochem 101:737–748

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist J, Das S, Van Petegem F, Bosmans F (2013) Crystallographic insights into sodium-channel modulation by the β4 subunit. Proc Natl Acad Sci U S A 110:E5016–E5024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glaaser IW, Clancy CE (2006) Cardiac Na+ channels as therapeutic targets for antiarrhythmic agents. Handb Exp Pharmacol 171:99–121

    Article  CAS  Google Scholar 

  • Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319

    Article  PubMed  CAS  Google Scholar 

  • Graceffa RF, Boezio AA, Able J, Altmann S, Berry LM, Boezio C, Butler JR, Chu-Moyer M, Cooke M, DiMauro EF et al (2017) Sulfonamides as selective NaV1.7 inhibitors: optimizing potency, pharmacokinetics, and metabolic properties to obtain atropisomeric quinolinone (AM-0466) that affords robust in vivo activity. J Med Chem 60:5990–6017

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:196–201

    Article  PubMed  CAS  Google Scholar 

  • Gur M, Kahn R, Karbat I, Regev N, Wang J, Catterall WA, Gordon D, Gurevitz M (2011) Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core domain of scorpion α-toxins on sodium channels. J Biol Chem 286:35209–35217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W et al (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  PubMed  CAS  Google Scholar 

  • Habib AM, Wood JN, Cox JJ (2015) Sodium channels and pain. Handb Exp Pharmacol 227:39–56

    Article  PubMed  CAS  Google Scholar 

  • Hackel D, Krug SM, Sauer RS, Mousa SA, Bocker A, Pflucke D, Wrede EJ, Kistner K, Hoffmann T, Niedermirtl B et al (2012) Transient opening of the perineurial barrier for analgesic drug delivery. Proc Natl Acad Sci U S A 109:E2018–E2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Henriques ST, Deplazes E, Lawrence N, Cheneval O, Chaousis S, Inserra M, Thongyoo P, King GF, Mark AE, Vetter I et al (2016) Interaction of tarantula venom peptide ProTx-II with lipid membranes is a prerequisite for its inhibition of human voltage-gated sodium channel NaV1.7. J Biol Chem 291:17049–17065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG (2003) Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551:741–750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hille B (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J 15:615–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Ho C, O’Leary ME (2011) Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 46:159–166

    Article  PubMed  CAS  Google Scholar 

  • Hockley JR, Gonzalez-Cano R, McMurray S, Tejada-Giraldez MA, McGuire C, Torres A, Wilbrey AL, Cibert-Goton V, Nieto FR, Pitcher T et al (2017) Visceral and somatic pain modalities reveal NaV 1.7-independent visceral nociceptive pathways. J Physiol 595:2661–2679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, Rettie SA, Kim DE, Silva D, Ibrahim YM et al (2017) Comprehensive computational design of ordered peptide macrocycles. Science 358:1461–1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang W, Liu M, Yan SF, Yan N (2017) Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 8:401–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hui K, Lipkind G, Fozzard HA, French RJ (2002) Electrostatic and steric contributions to block of the skeletal muscle sodium channel by μ-conotoxin. J Gen Physiol 119:45–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Israel MR, Tay B, Deuis JR, Vetter I (2017) Sodium channels and venom peptide pharmacology. Adv Pharmacol 79:67–116

    Article  PubMed  Google Scholar 

  • Jaimovich E, Ildefonse M, Barhanin J, Rougier O, Lazdunski M (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor. Proc Natl Acad Sci U S A 79:3896–3900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jalali A, Bosmans F, Amininasab M, Clynen E, Cuypers E, Zaremirakabadi A, Sarbolouki MN, Schoofs L, Vatanpour H, Tytgat J (2005) OD1, the first toxin isolated from the venom of the scorpion Odonthobuthus doriae active on voltage-gated Na+ channels. FEBS Lett 579:4181–4186

    Article  PubMed  CAS  Google Scholar 

  • Jones HM, Butt RP, Webster RW, Gurrell I, Dzygiel P, Flanagan N, Fraier D, Hay T, Iavarone LE, Luckwell J et al (2016) Clinical micro-dose studies to explore the human pharmacokinetics of four selective inhibitors of human Nav1.7 voltage-dependent sodium channels. Clin Pharmacokinet 55:875–887

    Article  PubMed  CAS  Google Scholar 

  • Klint JK, Smith JJ, Vetter I, Rupasinghe DB, Er SY, Senff S, Herzig V, Mobli M, Lewis RJ, Bosmans F et al (2015a) Seven novel modulators of the analgesic target NaV 1.7 uncovered using a high-throughput venom-based discovery approach. Br J Pharmacol 172:2445–2458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klint JK, Chin YK, Mobli M (2015b) Rational engineering defines a molecular switch that is essential for activity of spider-venom peptides against the analgesics target NaV1.7. Mol Pharmacol 88:1002–1010

    Article  PubMed  CAS  Google Scholar 

  • Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14:1084–1090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 4:1236–1260

    Article  CAS  Google Scholar 

  • Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee JH, Lehto SG et al (2017) Pharmacologic characterization of AMG8379, a potent and selective small molecule sulfonamide antagonist of the voltage-gated sodium channel NaV1.7. J Pharmacol Exp Ther 362:146–160

    Article  PubMed  CAS  Google Scholar 

  • Kurban M, Wajid M, Shimomura Y, Christiano AM (2010) A nonsense mutation in the SCN9A gene in congenital insensitivity to pain. Dermatology 221:179–183

    Article  PubMed  PubMed Central  Google Scholar 

  • La DS, Peterson EA, Bode C, Boezio AA, Bregman H, Chu-Moyer MY, Coats J, DiMauro EF, Dineen TA, Du B et al (2017) The discovery of benzoxazine sulfonamide inhibitors of NaV1.7: tools that bridge efficacy and target engagement. Bioorg Med Chem Lett 27:3477–3485

    Article  PubMed  CAS  Google Scholar 

  • Lacroix JJ, Campos FV, Frezza L, Bezanilla F (2013) Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron 79:651–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 221:91–110

    Article  PubMed  CAS  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SY, MacKinnon R (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430:232–235

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, MacKinnon R (2017) Structures of the human HCN1 hyperpolarization-activated channel. Cell 168:111–120. e111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Park CK, Chen G, Han Q, Xie RG, Liu T, Ji RR, Lee SY (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157:1393–1404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leffler A, Herzog RI, Dib-Hajj SD, Waxman SG, Cummins TR (2005) Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Arch 451:454–463

    Article  PubMed  CAS  Google Scholar 

  • Leipold E, Hansel A, Borges A, Heinemann SH (2006) Subtype specificity of scorpion β-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol 70:340–347

    Article  PubMed  CAS  Google Scholar 

  • Leipold E, DeBie H, Zorn S, Borges A, Olivera BM, Terlau H, Heinemann SH (2007) μO-conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2. Channels (Austin) 1:253–262

    Article  Google Scholar 

  • Leipold E, Borges A, Heinemann SH (2012) Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. J Gen Physiol 139:305–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leterrier C, Brachet A, Fache MP, Dargent B (2010) Voltage-gated sodium channel organization in neurons: protein interactions and trafficking pathways. Neurosci Lett 486:92–100

    Article  PubMed  CAS  Google Scholar 

  • Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 66:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Tseng M, Epstein LF, Green L, Chan B, Soriano B, Lim D, Pan O, Murawsky CM, King CT et al (2016) Evaluation of recombinant monoclonal antibody SVmab1 binding to NaV1.7 target sequences and block of human NaV1.7 currents. F1000Res 5:2764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  • Maertens C, Cuypers E, Amininasab M, Jalali A, Vatanpour H, Tytgat J (2006) Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae. Mol Pharmacol 70:405–414

    PubMed  CAS  Google Scholar 

  • Mansouri M, Chafai Elalaoui S, Ouled Amar Bencheikh B, El Alloussi M, Dion PA, Sefiani A, Rouleau GA (2014) A novel nonsense mutation in SCN9A in a Moroccan child with congenital insensitivity to pain. Pediatr Neurol 51:741–744

    Article  PubMed  Google Scholar 

  • Marx IE, Dineen TA, Able J, Bode C, Bregman H, Chu-Moyer M, DiMauro EF, Du B, Foti RS, Fremeau RT Jr et al (2016) Sulfonamides as selective NaV1.7 inhibitors: optimizing potency and pharmacokinetics to enable in vivo target engagement. ACS Med Chem Lett 7:1062–1067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McArthur JR, Singh G, McMaster D, Winkfein R, Tieleman DP, French RJ (2011) Interactions of key charged residues contributing to selective block of neuronal sodium channels by μ-conotoxin KIIIA. Mol Pharmacol 80:573–584

    Article  PubMed  CAS  Google Scholar 

  • McCormack K, Santos S, Chapman ML, Krafte DS, Marron BE, West CW, Krambis MJ, Antonio BM, Zellmer SG, Printzenhoff D et al (2013) Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A 110:E2724–E2732

    Article  PubMed  PubMed Central  Google Scholar 

  • McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102

    Article  PubMed  CAS  Google Scholar 

  • Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM et al (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41:14734–14747

    Article  PubMed  CAS  Google Scholar 

  • Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ (2009) Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16:1080–1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, Mancini F, Iannetti GD, Bogdanov YD, Santana-Varela S et al (2015) Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 6:8967

    Article  PubMed  CAS  Google Scholar 

  • Morinville A, Fundin B, Meury L, Jureus A, Sandberg K, Krupp J, Ahmad S, O’Donnell D (2007) Distribution of the voltage-gated sodium channel NaV1.7 in the rat: expression in the autonomic and endocrine systems. J Comp Neurol 504:680–689

    Article  PubMed  CAS  Google Scholar 

  • Murray JK, Ligutti J, Liu D, Zou A, Poppe L, Li H, Andrews KL, Moyer BD, McDonough SI, Favreau P et al (2015a) Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the NaV1.7 sodium channel. J Med Chem 58:2299–2314

    Article  PubMed  CAS  Google Scholar 

  • Murray JK, Biswas K, Holder JR, Zou A, Ligutti J, Liu D, Poppe L, Andrews KL, Lin FF, Meng SY et al (2015b) Sustained inhibition of the NaV1.7 sodium channel by engineered dimers of the domain II binding peptide GpTx-1. Bioorg Med Chem Lett 25:4866–4871

    Article  PubMed  CAS  Google Scholar 

  • Nicole S, Fontaine B (2015) Skeletal muscle sodium channelopathies. Curr Opin Neurol 28:508–514

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986) Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JE, Meisler MH (2013) Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4:213

    PubMed  PubMed Central  Google Scholar 

  • O’Malley HA, Isom LL (2015) Sodium channel beta subunits: emerging targets in channelopathies. Annu Rev Physiol 77:481–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S, Grundy L, Rychkov GY et al (2016) Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534:494–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osteen JD, Sampson K, Iyer V, Julius D, Bosmans F (2017) Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 114:6836–6841

    PubMed  PubMed Central  CAS  Google Scholar 

  • Over B, Matsson P, Tyrchan C, Artursson P, Doak BC, Foley MA, Hilgendorf C, Johnston SE, Lee MD, Lewis RJ et al (2016) Structural and conformational determinants of macrocycle cell permeability. Nat Chem Biol 12:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Carlin KP, Wu G, Ilyin VI, Kyle DJ (2012) Cysteine racemization during the Fmoc solid phase peptide synthesis of the Nav1.7-selective peptide – protoxin II. J Pept Sci 18:442–448

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Carlin KP, Wu G, Ilyin VI, Musza LL, Blake PR, Kyle DJ (2014) Studies examining the relationship between the chemical structure of protoxin II and its activity on voltage gated sodium channels. J Med Chem 57:6623–6631

    Article  PubMed  CAS  Google Scholar 

  • Payandeh J, Minor DL Jr (2015) Bacterial voltage-gated sodium channels (BacNavs) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol 427:3–30

    Article  PubMed  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payne CE, Brown AR, Theile JW, Loucif AJ, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM et al (2015) A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol 172:2654–2670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pero JE, Rossi MA, Lehman H, Kelly MJ 3rd, Mulhearn JJ, Wolkenberg SE, Cato MJ, Clements MK, Daley CJ, Filzen T et al (2017) Benzoxazolinone aryl sulfonamides as potent, selective Nav1.7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg Med Chem Lett 27:2683–2688

    Article  PubMed  CAS  Google Scholar 

  • Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF (2014) Spider venomics: implications for drug discovery. Future Med Chem 6:1699–1714

    Article  PubMed  CAS  Google Scholar 

  • Pitt GS, Lee SY (2016) Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins. Protein Sci 25:1573–1584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pless SA, Galpin JD, Frankel A, Ahern CA (2011) Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nat Commun 2:351

    Article  PubMed  CAS  Google Scholar 

  • Pless SA, Elstone FD, Niciforovic AP, Galpin JD, Yang R, Kurata HT, Ahern CA (2014) Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. J Gen Physiol 143:645–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price N, Namdari R, Neville J, Proctor KJ, Kaber S, Vest J, Fetell M, Malamut R, Sherrington R, Pimstone SN et al (2017) Safety and efficacy of a topical sodium channel inhibitor (TV-45070) in patients with post herpetic neuralgia (PHN): a randomized, controlled, proof-of-concept, crossover study, with a subgroup analysis of the Nav1.7 R1150W genotype. Clin J Pain 33:310–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajamani R, Wu S, Rodrigo I, Gao M, Low S, Megson L, Wensel D, Pieschl RL, Post-Munson DJ, Watson J et al (2017) A functional NaV1.7-NaVAb chimera with a reconstituted high-affinity ProTx-II binding site. Mol Pharmacol 92:310–317

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 46:831–844

    Article  PubMed  CAS  Google Scholar 

  • Roecker AJ, Egbertson M, Jones KLG, Gomez R, Kraus RL, Li Y, Koser AJ, Urban MO, Klein R, Clements M et al (2017) Discovery of selective, orally bioavailable, N-linked arylsulfonamide Nav1.7 inhibitors with pain efficacy in mice. Bioorg Med Chem Lett 27:2087–2093

    Article  PubMed  CAS  Google Scholar 

  • Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel α subunit. J Biol Chem 271:15950–15962

    Article  PubMed  CAS  Google Scholar 

  • Rosker C, Lohberger B, Hofer D, Steinecker B, Quasthoff S, Schreibmayer W (2007) The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Nav1.6 voltage-dependent sodium channel. Am J Physiol Cell Physiol 293:C783–C789

    Article  PubMed  CAS  Google Scholar 

  • Savio-Galimberti E, Argenziano M, Antzelevitch C (2017) Cardiac arrhythmias related to sodium channel dysfunction. Handb Exp Pharmacol. https://doi.org/10.1007/164_2017_43

  • Sawal HA, Harripaul R, Mikhailov A, Dad R, Ayub M, Jawad Hassan M, Vincent JB (2016) Biallelic truncating SCN9A mutation identified in four families with congenital insensitivity to pain from Pakistan. Clin Genet 90:563–565

    Article  PubMed  CAS  Google Scholar 

  • Scanio MJ, Shi L, Drizin I, Gregg RJ, Atkinson RN, Thomas JB, Johnson MS, Chapman ML, Liu D, Krambis MJ et al (2010) Discovery and biological evaluation of potent, selective, orally bioavailable, pyrazine-based blockers of the NaV1.8 sodium channel with efficacy in a model of neuropathic pain. Bioorg Med Chem 18:7816–7825

    Article  PubMed  CAS  Google Scholar 

  • Schenkel LB, DiMauro EF, Nguyen HN, Chakka N, Du B, Foti RS, Guzman-Perez A, Jarosh M, La DS, Ligutti J et al (2017) Discovery of a biarylamide series of potent, state-dependent NaV1.7 inhibitors. Bioorg Med Chem Lett 27:3817–3824

    Article  PubMed  CAS  Google Scholar 

  • Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, Kaczorowski GJ, Garcia ML, Koltzenburg M, Priest BT (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74:1476–1484

    Article  PubMed  CAS  Google Scholar 

  • Sharkey RG, Beneski DA, Catterall WA (1984) Differential labeling of the α and β1 subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry 23:6078–6086

    Article  PubMed  CAS  Google Scholar 

  • Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL Jr (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol 426:467–483

    Article  PubMed  CAS  Google Scholar 

  • Shcherbatko A, Rossi A, Foletti D, Zhu G, Bogin O, Galindo Casas M, Rickert M, Hasa-Moreno A, Bartsevich V, Crameri A et al (2016) Engineering highly potent and selective microproteins against Nav1.7 sodium channel for treatment of pain. J Biol Chem 291:13974–13986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science. 2017;355(6328). pii: eaal4326

    Google Scholar 

  • Shorer Z, Wajsbrot E, Liran TH, Levy J, Parvari R (2014) A novel mutation in SCN9A in a child with congenital insensitivity to pain. Pediatr Neurol 50:73–76

    Article  PubMed  Google Scholar 

  • Skerratt SE, West CW (2015) Ion channel therapeutics for pain. Channels (Austin) 9:344–351

    Article  Google Scholar 

  • Smith JJ, Alphy S, Seibert AL, Blumenthal KM (2005) Differential phospholipid binding by site 3 and site 4 toxins. Implications for structural variability between voltage-sensitive sodium channel domains. J Biol Chem 280:11127–11133

    Article  PubMed  CAS  Google Scholar 

  • Sokolov S, Kraus RL, Scheuer T, Catterall WA (2008) Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II. Mol Pharmacol 73:1020–1028

    Article  PubMed  CAS  Google Scholar 

  • Storer RI, Pike A, Swain NA, Alexandrou AJ, Bechle BM, Blakemore DC, Brown AD, Castle NA, Corbett MS, Flanagan NJ et al (2017) Highly potent and selective NaV1.7 inhibitors for use as intravenous agents and chemical probes. Bioorg Med Chem Lett 27:4805–4811

    Article  PubMed  CAS  Google Scholar 

  • Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Article  PubMed  CAS  Google Scholar 

  • Sun J, MacKinnon R (2017) Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169:1042–1050. e1049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun S, Cohen CJ, Dehnhardt CM (2014) Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010. Pharm Pat Anal 3:509–521

    Article  PubMed  CAS  Google Scholar 

  • Swain NA, Batchelor D, Beaudoin S, Bechle BM, Bradley PA, Brown AD, Brown B, Butcher KJ, Butt RP, Chapman ML et al (2017) Discovery of clinical candidate 4-[2-(5-amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): design and optimization of diaryl ether aryl sulfonamides as selective inhibitors of NaV1.7. J Med Chem 60:7029–7042

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Gamal El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, Catterall WA (2016) Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537:117–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theile JW, Fuller MD, Chapman ML (2016) The selective Nav1.7 inhibitor, PF-05089771, interacts equivalently with fast and slow inactivated Nav1.7 channels. Mol Pharmacol 90:540–548

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Tran R, Du Bois J (2016) Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7. Proc Natl Acad Sci U S A 113:5856–5861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomsen WJ, Catterall WA (1989) Localization of the receptor site for α-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci U S A 86:10161–10165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301

    Article  PubMed  CAS  Google Scholar 

  • Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F et al (2012) An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J Gen Physiol 140:587–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M (2017) NaV1.7 as a pain target – from gene to pharmacology. Pharmacol Ther 172:73–100

    Article  PubMed  CAS  Google Scholar 

  • Vijverberg HP, Lazdunski M (1984) A new scorpion toxin with a very high affinity for sodium channels. An electrophysiological study. J Physiol Paris 79:275–279

    PubMed  CAS  Google Scholar 

  • Walewska A, Han TS, Zhang MM, Yoshikami D, Bulaj G, Rolka K (2013) Expanding chemical diversity of conotoxins: peptoid-peptide chimeras of the sodium channel blocker μ-KIIIA and its selenopeptide analogues. Eur J Med Chem 65:144–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker JR, Novick PA, Parsons WH, McGregor M, Zablocki J, Pande VS, Du Bois J (2012) Marked difference in saxitoxin and tetrodotoxin affinity for the human nociceptive voltage-gated sodium channel Nav1.7. Proc Natl Acad Sci U S A 109:18102–18107

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GK, Strichartz G (1982) Simultaneous modifications of sodium channel gating by two scorpion toxins. Biophys J 40:175–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA (2011) Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 108:15426–15431

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472:186–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss MM, Dineen TA, Marx IE, Altmann S, Boezio A, Bregman H, Chu-Moyer M, DiMauro EF, Feric Bojic E, Foti RS et al (2017) Sulfonamides as selective NaV1.7 inhibitors: optimizing potency and pharmacokinetics while mitigating metabolic liabilities. J Med Chem 60:5969–5989

    Article  PubMed  CAS  Google Scholar 

  • Whicher JR, MacKinnon R (2016) Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson MJ, Zhang MM, Azam L, Olivera BM, Bulaj G, Yoshikami D (2011a) Navbeta subunits modulate the inhibition of Nav1.8 by the analgesic gating modifier μO-conotoxin MrVIB. J Pharmacol Exp Ther 338:687–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM (2011b) μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 108:10302–10307

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright ZVF, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M et al (2017) The role of disulfide bond replacements in analogues of the tarantula toxin ProTx-II and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7. J Am Chem Soc 139:13063–13075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Li Z, Yang G, Teng M, Qin J, Hu Z, Hou L, Shen L, Dong H, Zhang Y et al (2017a) The discovery of tetrahydropyridine analogs as hNav1.7 selective inhibitors for analgesia. Bioorg Med Chem Lett 27:2210–2215

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Guernon J, McClure A, Luo G, Rajamani R, Ng A, Easton A, Newton A, Bourin C, Parker D et al (2017b) Discovery of non-zwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorg Med Chem 25:5490–5505

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Guernon J, Shi J, Ditta J, Robbins KJ, Rajamani R, Easton A, Newton A, Bourin C, Mosure K et al (2017c) Development of new benzenesulfonamides as potent and selective Nav1.7 inhibitors for the treatment of pain. J Med Chem 60:2513–2525

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Blumenthal K, Jackson JO 2nd, Liang S, Cummins TR (2010) The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation. Mol Pharmacol 78:1124–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, Yan N (2017) Structure of the Nav1.4-β1 complex from electric eel. Cell 170:470–482.e411

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110:17534–17539

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang SW, Ho GD, Tulshian D, Bercovici A, Tan Z, Hanisak J, Brumfield S, Matasi J, Sun X, Sakwa SA et al (2014) Bioavailable pyrrolo-benzo-1,4-diazines as NaV1.7 sodium channel blockers for the treatment of pain. Bioorg Med Chem Lett 24:4958–4962

    Article  PubMed  CAS  Google Scholar 

  • Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004:re15

    PubMed  Google Scholar 

  • Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2011) Structure-function map of the receptor site for β-scorpion toxins in domain II of voltage-gated sodium channels. J Biol Chem 286:33641–33651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J et al (2012a) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2012b) Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na+ channels. J Biol Chem 287:30719–30728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang MM, Wilson MJ, Azam L, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D (2013) Co-expression of NaVβ subunits alters the kinetics of inhibition of voltage-gated sodium channels by pore-blocking μ-conotoxins. Br J Pharmacol 168:1597–1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Payandeh or David H. Hackos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Payandeh, J., Hackos, D.H. (2018). Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2018_97

Download citation

Publish with us

Policies and ethics