Skip to main content

The Mechanism FA-Dependent H+ Transport by UCP1

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 251))

Abstract

Uncoupling protein 1 (UCP1) is an integral protein of the inner mitochondrial membrane (IMM) that is expressed specifically in brown and beige fat depots. UCP1 is responsible for the production of heat to control core body temperature, the regulation of fat metabolism, and the energy balance. As an uncoupling protein, UCP1 transports H+ across the IMM in presence of long-chain fatty acids (FA), which makes brown fat mitochondria produce heat at the expense of ATP. However, the exact mechanism of UCP1 action has remained difficult to elucidate, because direct methods for studying currents generated by UCP1 were unavailable. Recently, the patch-clamp technique was successfully applied to brown and beige fat mitochondria to directly study H+ currents across the IMM and characterize UCP1 function. A new model of the UCP1 mechanism was proposed based on the patch-clamp analysis. In this model, both FA anions (FA) and H+ are transport substrates of UCP1, and UCP1 operates as a non-canonical FA/H+ symporter. Here, we summarize recent findings obtained with the patch-clamp technique that describe how UCP1 can transport not only H+ but also FA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aquila H, Link TA, Klingenberg M (1985) The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. EMBO J 4:2369–2376

    Article  CAS  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    Article  CAS  Google Scholar 

  • Bertholet AM, Kirichok Y (2017) UCP1: a transporter for H+ and fatty acid anions. Biochimie 134:28–34

    Article  CAS  Google Scholar 

  • Bertholet AM, Kazak L, Chouchani ET, Bogaczynska MG, Paranjpe I, Wainwright GL, Betourne A, Kajimura S, Spiegelman BM, Kirichok Y (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25:811–822.e814

    Article  CAS  Google Scholar 

  • Bouillaud F, Weissenbach J, Ricquier D (1986) Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein. J Biol Chem 261:1487–1490

    CAS  PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  Google Scholar 

  • Cannon B, Sundin U, Romert L (1977) Palmitoyl coenzyme A: a possible physiological regulator of nucleotide binding to brown adipose tissue mitochondria. FEBS Lett 74:43–46

    Article  CAS  Google Scholar 

  • Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetrivelan R, Clish CB et al (2016) Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532:112–116

    Article  CAS  Google Scholar 

  • Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64:2346–2351

    Article  CAS  Google Scholar 

  • Echtay KS, Winkler E, Bienengraeber M, Klingenberg M (2000) Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Biochemistry 39:3311–3317

    Article  CAS  Google Scholar 

  • Echtay KS, Bienengraeber M, Klingenberg M (2001) Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1). Biochemistry 40:5243–5248

    Article  CAS  Google Scholar 

  • Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    Article  CAS  Google Scholar 

  • Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413

    Article  CAS  Google Scholar 

  • Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209

    Article  CAS  Google Scholar 

  • Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271:2615–2620

    Article  CAS  Google Scholar 

  • Garlid KD, Jaburek M, Jezek P (1998) The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett 438:10–14

    Article  CAS  Google Scholar 

  • Gonzalez-Barroso MM, Fleury C, Bouillaud F, Nicholls DG, Rial E (1998) The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter. J Biol Chem 273:15528–15532

    Article  CAS  Google Scholar 

  • Huang SG (2003) Binding of fatty acids to the uncoupling protein from brown adipose tissue mitochondria. Arch Biochem Biophys 412:142–146

    Article  CAS  Google Scholar 

  • Jezek P, Jaburek M, Garlid KD (2010) Channel character of uncoupling protein-mediated transport. FEBS Lett 584:2135–2141

    Article  CAS  Google Scholar 

  • Jiménez-Jiménez J, Zardoya R, Ledesma A, García de Lacoba M, Zaragoza P, Mar González-Barroso M, Rial E (2006) Evolutionarily distinct residues in the uncoupling protein UCP1 are essential for its characteristic basal proton conductance. J Mol Biol 359:1010–1022

    Article  Google Scholar 

  • Katiyar SS, Shrago E (1991) Differential interaction of fatty acids and fatty acyl CoA esters with the purified/reconstituted brown adipose tissue mitochondrial uncoupling protein. Biochem Biophys Res Commun 175:1104–1111

    Article  CAS  Google Scholar 

  • Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643–655

    Article  CAS  Google Scholar 

  • Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021

    Article  CAS  Google Scholar 

  • Klingenberg M (2010) Wanderings in bioenergetics and biomembranes. Biochim Biophys Acta 1797:579–594

    Article  CAS  Google Scholar 

  • Klingenberg M (2017) UCP1 – a sophisticated energy valve. Biochimie 134:19–27

    Article  CAS  Google Scholar 

  • Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296

    Article  CAS  Google Scholar 

  • Klingenberg M, Winkler E (1985) The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J 4:3087–3092

    Article  CAS  Google Scholar 

  • Kozak LP, Koza RA, Anunciado-Koza R (2010) Brown fat thermogenesis and body weight regulation in mice: relevance to humans. Int J Obes 34(Suppl 1):S23–S27

    Article  Google Scholar 

  • Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev 6:248–261

    Article  CAS  Google Scholar 

  • Kunji ER, Robinson AJ (2010) Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20:440–447

    Article  CAS  Google Scholar 

  • Lin CS, Klingenberg M (1980) Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett 113:299–303

    Article  CAS  Google Scholar 

  • Lin CS, Klingenberg M (1982) Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry 21:2950–2956

    Article  CAS  Google Scholar 

  • Nicholls DG (2001) A history of UCP1. Biochem Soc Trans 29:751–755

    Article  CAS  Google Scholar 

  • Nicholls DG (2006) The physiological regulation of uncoupling proteins. Biochim Biophys Acta 1757:459–466

    Article  CAS  Google Scholar 

  • Nicholls DG, Lindberg O (1973) Brown-adipose-tissue mitochondria. The influence of albumin and nucleotides on passive ion permeabilities. Eur J Biochem 37:523–530

    Article  CAS  Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    Article  CAS  Google Scholar 

  • Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31:399–406

    Article  CAS  Google Scholar 

  • Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575

    Article  CAS  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    Article  CAS  Google Scholar 

  • Rial E, Gonzalez-Barroso MM (2001) Physiological regulation of the transport activity in the uncoupling proteins UCP1 and UCP2. Biochim Biophys Acta 1504:70–81

    Article  CAS  Google Scholar 

  • Rial E, Poustie A, Nicholls DG (1983) Brown-adipose-tissue mitochondria: the regulation of the 32000-Mr uncoupling protein by fatty acids and purine nucleotides. Eur J Biochem 137:197–203

    Article  CAS  Google Scholar 

  • Ricquier D, Kader JC (1976) Mitochondrial protein alteration in active brown fat: a soidum dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73:577–583

    Article  CAS  Google Scholar 

  • Robinson AJ, Kunji ER (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci U S A 103:2617–2622

    Article  CAS  Google Scholar 

  • Robinson AJ, Overy C, Kunji ER (2008) The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105:17766–17771

    Article  CAS  Google Scholar 

  • Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ERS (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci U S A 111:E426–E434

    Article  CAS  Google Scholar 

  • Shabalina IG, Jacobsson A, Cannon B, Nedergaard J (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem 279:38236–38248

    Article  CAS  Google Scholar 

  • Shabalina IG, Backlund EC, Bar-Tana J, Cannon B, Nedergaard J (2008) Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism. Biochim Biophys Acta 1777:642–650

    Article  CAS  Google Scholar 

  • Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203

    Article  CAS  Google Scholar 

  • Skulachev VP (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294:158–162

    Article  CAS  Google Scholar 

  • Winkler E, Klingenberg M (1994) Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J Biol Chem 269:2508–2515

    CAS  PubMed  Google Scholar 

  • Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 5R01GM107710 to Y.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ambre M. Bertholet or Yuriy Kirichok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertholet, A.M., Kirichok, Y. (2018). The Mechanism FA-Dependent H+ Transport by UCP1. In: Pfeifer, A., Klingenspor, M., Herzig, S. (eds) Brown Adipose Tissue. Handbook of Experimental Pharmacology, vol 251. Springer, Cham. https://doi.org/10.1007/164_2018_138

Download citation

Publish with us

Policies and ethics