Skip to main content

Ligands at the Free Fatty Acid Receptors 2/3 (GPR43/GPR41)

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

A large number of reviews and commentaries have highlighted the potential role of the short-chain fatty acid receptors GPR41 (FFA3) and, particularly, GPR43 (FFA2) as an interface between the intestinal microbiota and metabolic and inflammatory disorders. However, short-chain fatty acids have very modest potency and display limited selectivity between these two receptors, and studies on receptor knockout mice have resulted in non-uniform conclusions; therefore, selective and high-potency/high-affinity synthetic ligands are required to further explore the contribution of these receptors to health and disease. Currently no useful orthosteric ligands of FFA3 have been reported and although a number of orthosteric FFA2 agonists and antagonists have been described, a lack of affinity of different chemotypes of FFA2 antagonists at the mouse and rat orthologs of this receptor has hindered progress. Selective allosteric regulators of both FFA2 and FFA3 have provided tools to address a number of basic questions in both in vitro and ex vivo preparations, but at least some of the positive modulators appear to be biased and able to regulate only a subset of the functional capabilities of the short-chain fatty acids. Significant further progress is required to provide improved tool compounds to better assess potential translational opportunities of these receptors for short-chain fatty acids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, Bernalier-Donadille A, Denis S, Hofman P, Bonnet R, Billard E, Barnich N (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Sci Rep 6:19032

    Google Scholar 

  • Ang Z, Ding JL (2016) GPR41 and GPR43 in obesity and inflammation – protective or causative? Front Immunol 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for modeling G-protein coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Bolognini D, Tobin AB, Milligan G, Moss CE (2016a) The pharmacology and function of short chain fatty acid receptors. Mol Pharmacol 89:388–398

    Google Scholar 

  • Bolognini D, Moss CE, Nilsson K, Petersson AU, Donnelly I, Sergeev E, König GM, Kostenis E, Kurowska-Stolarska M, Miller A, Dekker N, Tobin AB, Milligan G (2016b) A novel allosteric activator of free fatty acid 2 receptor displays unique Gi-functional bias. J Biol Chem 291:18915–18931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brantis C, Ooms F, Bernard J (2011) Novel amino acid derivatives and their use as gpr43 receptor modulators. PCT Int Appl WO2011092284

    Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Tsoulou C, Ward E, Gower E, Bhudia N, Chowdhury F, Dean TW, Faucher N, Gangar A, Dowell SJ (2015) Pharmacological properties of acid N-thiazolylamide FFA2 agonists. Pharmacol Res Perspect 3, e00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nohr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes S, Stafford S, Coope G, Heffron H, Real K, Newman R, Davenport R, Barnes M, Grosse J, Cox H (2015) Selective FFA2 agonism appears to act via intestinal PYY to reduce transit and food intake but does not improve glucose tolerance in mouse models. Diabetes 64:3763–3771

    Article  CAS  PubMed  Google Scholar 

  • Grundmann M, Tikhonova IG, Hudson BD, Smith NJ, Mohr K, Ulven T, Milligan G, Kenakin T, Kostenis E (2016) A molecular mechanism for sequential activation of a G protein-coupled receptor. Cell Chem Biol 23:392–403

    Article  PubMed  Google Scholar 

  • Hoveyda H, Brantis CE, Dutheuil G, Zoute L, Schils D, Bernard J (2010) Compounds, pharmaceutical composition and methods for use in treating metabolic disorders. PCT Int Appl WO2011076732

    Google Scholar 

  • Hoveyda H, Brantis CE, Dutheuil G, Zoute L, Schils D, Bernard J (2011a) Compounds, pharmaceutical composition and methods for use in treating inflammatory diseases. PCT Int Appl WO2011076734

    Google Scholar 

  • Hoveyda H, Brantis CE, Dutheuil G, Zoute L, Schils D, Fraser G (2011b) Compounds, pharmaceutical composition and methods for use in treating for use in the treatment of gastrointestinal disorders. PCT Int Appl WO2011076732

    Google Scholar 

  • Hoveyda H, Schils D, Zoute L, Parcq J (2011c) Pyrrolidine or thiazolidine carboxylic acid derivatives, pharmaceutical compositions and methods for use as in treating metabolic disorders as agonists of G-protein coupled receptor 43 (GPR43). PCT Int Appl WO2011073376

    Google Scholar 

  • Hoveyda H, Zoute L, Lenoir F (2011d) Azepanes, azocanes and related compounds as GPR43 modulators and their preparation and use for the treatment of inflammatory, gastrointestinal and metabolic disorders. PCT Int Appl WO2011151436

    Google Scholar 

  • Hudson BD, Christiansen E, Murdoch H, Jenkins L, Hansen AH, Madsen O, Ulven T, Milligan G (2014) Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands. Mol Pharmacol 86:200–210

    Article  PubMed  Google Scholar 

  • Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Murdoch H, Pandey SK, Ward RJ, Marquez R, Tikhonova IG, Ulven T, Milligan G (2013) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem 288:17296–17312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem 287:41195–41209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin T (2015) The effective application of biased signaling to new drug discovery. Mol Pharmacol 88:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108:8030–8035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane JR, Sexton PM, Christopoulos A (2013) Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 34:59–66

    Article  CAS  PubMed  Google Scholar 

  • Lee SU, In HJ, Kwon MS, Park BO, Jo M, Kim MO, Cho S, Lee S, Lee HJ, Kwak YS, Kim S (2013) beta-Arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear factor-kappaB. Biol Pharm Bull 36:1754–1759

    Google Scholar 

  • Lee T, Schwandner R, Swaminath G, Weiszmann J, Cardozo M, Greenberg J, Jaeckel P, Ge H, Wang Y, Jiao X, Liu J, Kayser F, Tian H, Li Y (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol 74:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Leonard JN, Chu ZL, Bruce MA, Boatman PD (2006) GPR41 and modulators thereof for the treatment of insulin-related disorders. PCT Int Appl WO 2006052566

    Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Duprie V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  PubMed  Google Scholar 

  • Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303:1047–1052

    Article  CAS  PubMed  Google Scholar 

  • McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AM, Wollam J, Olefsky JM (2015) GPR43 potentiates β-cell function in obesity. Diabetes 64:3203–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wang T, Shi M, Fu P, Pei H, Ye H (2016) Synthesis, activity and docking study of novel phenylthiazole-carboxamido acid derivatives as FFA2 agonists. Chem Biol Drug Des 88:26–37

    Google Scholar 

  • Milligan G, Shimpukade B, Ulven T, Hudson BD (2016) Complex pharmacology of the free fatty acid receptors. Chem Rev (in press)

    Google Scholar 

  • Milligan G, Stoddart LA, Smith NJ (2009) Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3. Br J Pharmacol 158:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr K, Schmitz J, Schrage R, Tränkle C, Holzgrabe U (2013) Molecular alliance-from orthosteric and allosteric ligands to dualsteric/bitopic agonists at G protein coupled receptors. Angew Chem Int Ed Engl 52:508–516

    Article  CAS  PubMed  Google Scholar 

  • Namour F, Galien R, Van Kaem T, Van der Aa A, Vanhoutte F, Beetens J, Van’t Klooster G (2016) Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects. Br J Clin Pharmacol 82:139–148

    Google Scholar 

  • Nohr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW et al (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:3552–3564

    Article  PubMed  Google Scholar 

  • Park BO, Kim SH, Kong GY, da Kim H, Kwon MS, Lee SU, Kim MO, Cho S, Lee S, Lee HJ, Han SB, Kwak YS, Lee SB, Kim S (2016) Selective novel inverse agonists for human GPR43 augment GLP-1 secretion. Eur J Pharmacol 771:1–9

    Article  CAS  PubMed  Google Scholar 

  • Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanqué R, Cherel L, Christophe T, Crescenzi B, De Lemos E, Delerive P, Deprez P, De Vos S, Djata F, Fletcher S, Kopiejewski S, L’Ebraly C, Lefrançois JM, Lavazais S, Manioc M, Nelles L, Oste L, Polancec D, Quénéhen V, Soulas F, Triballeau N, van der Aar EM, Vandeghinste N, Wakselman E, Brys R, Saniere L (2014) Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem 57:10044–10057

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A, Layden BT (2015) An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol 29:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saniere LRM, Pizzonero MR, Triballeau N, Vandeghinste NER, De VSIJ, Brys RCX, Pourbaix-L’ebraly CD (2012) Preparation of azetidine derivatives as GPR43 antagonists useful in the treatment of metabolic and inflammatory diseases. PCT Int Appl WO2012098033

    Google Scholar 

  • Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD, Ward RJ, Drewke C, Milligan G, Kostenis E, Ulven T (2011) Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem 286:10628–10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrage R, Schmitz AL, Gaffal E, Annala S, Kehraus S, Wenzel D, Büllesbach KM, Bald T, Inoue A, Shinjo Y, Galandrin S, Shridhar N, Hesse M, Grundmann M, Merten N, Charpentier TH, Martz M, Butcher AJ, Slodczyk T, Armando S, Effern M, Namkung Y, Jenkins L, Horn V, Stößel A, Dargatz H, Tietze D, Imhof D, Galés C, Drewke C, Müller CE, Hölzel M, Milligan G, Tobin AB, Gomeza J, Dohlman HG, Sondek J, Harden TK, Bouvier M, Laporte SA, Aoki J, Fleischmann BK, Mohr K, König GM, Tüting T, Kostenis E (2015) The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 6:10156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergeev E, Hansen H, Pandey SK, MacKenzie AE, Hudson BD, Ulven T, Milligan G (2016) Non-equivalence of key positively charged residues of the free fatty acid 2 receptor in the recognition and function of agonist versus antagonist ligands. J Biol Chem 291:303–317

    Article  CAS  PubMed  Google Scholar 

  • Smith NJ, Stoddart LA, Devine NM, Jenkins L, Milligan G (2009) The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J Biol Chem 284:17527–31759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, Morris JC, Tränkle C, Tikhonova IG, Adams DR, Milligan G (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol Pharmacol 80:163–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G, Lane W, Ivetac A, Aertgeerts K, Nguyen J, Jennings A, Okada K (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513:124–127

    Article  CAS  PubMed  Google Scholar 

  • Stoddart L, Smith NJ, Milligan G (2008a) International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 60:405–417

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Smith NJ, Jenkins L, Brown AJ, Milligan G (2008b) Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids. J Biol Chem 283:32913–32924

    Article  CAS  PubMed  Google Scholar 

  • Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2007) Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem 282:29248–29255

    Article  CAS  PubMed  Google Scholar 

  • Swaminath G, Jaeckel P, Guo Q, Cardozo M, Weiszmann J, Lindberg R, Wang Y, Schwandner R, Li Y (2011) Mutational analysis of G-protein coupled receptor--FFA2. Biochem Biophys Res Commun 405:122–127

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21:173–177

    Article  CAS  PubMed  Google Scholar 

  • Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne) 3:111

    Google Scholar 

  • Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6, e21205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, Greenberg J, Weiszmann J, Ge H, Tian H, Wong S, Schwandner R, Lee T, Li Y (2010) The first synthetic agonists of FFA2: discovery and SAR of phenylacetamides as allosteric modulators. Bioorg Med Chem Lett 20:493–498

    Article  PubMed  Google Scholar 

  • Won YJ, Lu VB, Puhl HL 3rd, Ikeda SR (2013) Beta-hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neurosci 33:19314–19325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584:2381–2386

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Milligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Milligan, G., Bolognini, D., Sergeev, E. (2016). Ligands at the Free Fatty Acid Receptors 2/3 (GPR43/GPR41). In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_49

Download citation

Publish with us

Policies and ethics