Skip to main content

Reconstructing Past Vegetation Communities Using Ancient DNA from Lake Sediments

  • Chapter
  • First Online:

Part of the book series: Population Genomics ((POGE))

Abstract

The field of ancient DNA has received much attention since the mid-1980s, when the first sequences of extinct species were obtained from museum and archaeological specimens. Early analyses focused on organellar DNA (mitochondrial in animals and chloroplast in plants) as these are present in multiple copies in the cells making isolation and analyses easier. Within the last decade, however, with considerable advances in high-throughput DNA sequencing technology and bioinformatics, it has become possible to analyse the more informative nuclear genome of a larger number of ancient samples and from a larger variety of substrates and environments. Here, we present recent progress made to reconstruct ancient vegetation communities from lake sediments and review recent key findings in the field. We synthesize and discuss the sources of plant DNA in sediment, the issues relating to DNA preservation after deposition, the criteria required for authentication and the technical advances recently made in the field for the analyses and the taxonomic identification of plant ancient DNA sequences obtained from these complex substrates. Together, these advances mean that we are on the way to an explosion of new information for the investigation of ancient plant environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed E, Parducci L, Unneberg P, Ågren R, Schenk F, Rattray JE, Han L, Muschitiello F, Pedersen MW, Smittenberg RH, et al. Archaeal community changes in Lateglacial lake sediments: evidence from ancient DNA. Quat Sci Rev. 2018;181:19–29.

    Google Scholar 

  • Alawi M, Schneider B, Kallmeyer J. A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample. J Microbiol Methods. 2014;104:36–42.

    CAS  PubMed  Google Scholar 

  • Allentoft EA, Collins M, Harker D, Haile J, Oskam C, Hale M, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B. 2012;279:4724–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alsos IG, Sjögren P, Edwards ME, Landvik JY, Gielly L, Forwick M, Coissac E, Brown AG, Jakobsen LV, Føreid MK, et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. The Holocene. 2016;26:1–16.

    Google Scholar 

  • Alsos IG, Lammers Y, Yoccoz NG, Jørgensen T, Sjögren P, Gielly L, Edwards ME. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS One. 2018;13:e0195403.

    PubMed  PubMed Central  Google Scholar 

  • Anderson-Carpenter LL, McLachlan JS, Jackson ST, Kuch M, Lumibao CY, Poinar HN. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol Biol. 2011;11:30–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baamrane MAA, Shehzad W, Ouhammou A, Abbad A, Naimi M, Coissac E, Taberlet P, Znari M. Assessment of the food habits of the Moroccan dorcas gazelle in M’Sabih Talaa, west Central Morocco, using the trnL approach. PLoS One. 2012;7:e35643.

    Google Scholar 

  • Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17:1–17.

    CAS  Google Scholar 

  • Bennett KD. Comment on ‘sedimentary DNA from a submerged site reveals wheat in the British Isles 8,000 years ago’. Science. 2015;349:247.

    CAS  Google Scholar 

  • Birks HJB, Birks HH. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? New Phytol. 2016;209:499–506.

    CAS  PubMed  Google Scholar 

  • Bissett A, Gibson JAE, Jarman SN, Swadling KM, Cromer L. Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnol Oceanogr Methods. 2005;3:533–42.

    Google Scholar 

  • Blum SAE, Lorenz MG, Wackernagel W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst Appl Microbiol. 1997;20:513–21.

    CAS  Google Scholar 

  • Boessenkool S, MCGlynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, Memomissa S, Brochmann C, Popp M. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv Biol. 2013;28:446–55.

    PubMed  Google Scholar 

  • Bremond L, Favier C, Ficetola GF, Tossou MG, Akouégninou A, Gielly L, Giguet-Covex C, Oslisly R, Salzmann U. Five thousand years of tropical lake sediment DNA records from Benin. Quat Sci Rev. 2017;170:203–11.

    Google Scholar 

  • Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prufer K, Meyer M, Krause J, Ronan MT, Lachmann M, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A. 2007;104:14616–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TA, Cappellini E, Kistler L, Lister DL, Oliveira HR, Wales N, Schlumbaum A. Recent advances in ancient DNA research and their implications for archaeobotany. Veg Hist Archaeobotany. 2014;24:207–14.

    Google Scholar 

  • Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, Gauthier E, Massa C, Develle AL, Pignol C, Lejzerowicz F, Domaizon I. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol Ecol. 2016;25:5925–43.

    CAS  PubMed  Google Scholar 

  • Coissac E, Hollingsworth PM, Lavergne S, Taberlet P. From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol. 2016;25:1423–8.

    CAS  PubMed  Google Scholar 

  • Coolen M, Gibson J. Ancient DNA in lake sediment records. PAGES News. 2009;17:104–6.

    Google Scholar 

  • da Fonseca RR, Smith BD, Wales NA, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MAC, Hufnagel DE, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:1–5.

    Google Scholar 

  • Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera CE, García N, Pääbo S, Arsuaga JL, et al. Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. 2013;110:15758–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domaizon I, Savichtcheva O, Debroas D, Arnaud F, Villar C, Pignol C, Alric B, Perga ME. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences. 2013;10:2515–64.

    Google Scholar 

  • Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erseus C, Erséus C, Gusarov VI, Edwards ME, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol. 2012;21:1821–33.

    CAS  PubMed  Google Scholar 

  • Epp LS, Gussarova G, Boessenkool S, Olsen J, Haile J, Schrøder-Nielsen A, Ludikova A, Hassel K, Stenøien HK, Funder S, et al. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quat Sci Rev. 2015;117:152–63.

    Google Scholar 

  • Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F. An in silico approach for the evaluation of DNA barcodes. BMC Genomics. 2010;11:434–1572.

    PubMed  PubMed Central  Google Scholar 

  • Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour. 2015;15:543–56.

    CAS  PubMed  Google Scholar 

  • Ficetola GF, Poulenard J, Sabatier P, Messager E, Gielly L, Leloup A, Etienne D, Bakke J, Malet E, Fanget B, et al. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci Adv. 2018;4:eaar4292.

    PubMed  PubMed Central  Google Scholar 

  • Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22(11):1747–60. https://doi.org/10.1021/tx900242k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giguet-Covex C, Pansu J, Arnaud F, Rey P-J, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun. 2014;5:3211.

    PubMed  Google Scholar 

  • Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics. 2011;27:2153–5.

    CAS  PubMed  Google Scholar 

  • Gómez-Zeledón J, Grasse W, Runge F, Land A. TaqMan qPCR pushes boundaries for the analysis of millennial wood. J Archeol Sci. 2017;79:53–61.

    Google Scholar 

  • Greaves MP, Wilson MJ. The adsorption of nucleic acids by montmorillonite. Soil Biol Biochem. 1969;1:317–23.

    CAS  Google Scholar 

  • Haile J, Froese DG, MacPhee RDE, Roberts RG, Arnold LJ, Reyes AV, Rasmussen M, Nielsen R, Brook BW, Robinson S, et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc Natl Acad Sci U S A. 2009;106:22352–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa Y, Suyama Y, Seiwa K. Pollen donor composition during the early phases of reproduction revealed by DNA genotyping of pollen grains and seeds of Castanea crenata. New Phytol. 2009;182:994–1002.

    CAS  PubMed  Google Scholar 

  • Hasegawa Y, Suyama Y, Seiwa K. Variation in pollen-donor composition among pollinators in an entomophilous tree species, Castanea crenata, revealed by single-pollen genotyping. PLoS One. 2015;10:e0120393.

    PubMed  PubMed Central  Google Scholar 

  • Heinecke L, Epp LS, Reschke M, Stoof-Leichsenring KR, Mischke S, Plessen B, Herzschuh U. Macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal kyr BP. J Paleolimnol. 2017;58(3):403–17. https://doi.org/10.1007/s10933-017-9986-7.

    Article  Google Scholar 

  • Hirota SK, Nitta K, Suyama Y, Kawakubo N, Yasumoto AA, Yahara T. Pollinator-mediated selection on flower color, flower scent and flower morphology of Hemerocallis: evidence from genotyping individual pollen grains on the stigma. PLoS One. 2013;8:e85601.

    PubMed  PubMed Central  Google Scholar 

  • Hofreiter M, Serre D, Poinar H, Kuch M, Pääbo S. Ancient DNA. Nat Rev Genet. 2001;2:353–9.

    CAS  PubMed  Google Scholar 

  • Hofreiter M, Betancourt JL, Sbriller AP, Markgraf V, McDonald HG. Phylogeny, diet, and habitat of an extinct ground sloth from Cuchillo Curá, Neuquén Province, Southwest Argentina. Quat Res. 2003;59:364–78.

    CAS  Google Scholar 

  • Hu FS, Hampe A, Petit RJ. Paleoecology meets genetics: deciphering past vegetational dynamics. Front Ecol Environ. 2009;7:371–9.

    Google Scholar 

  • Huang Y, Lowe DJ, Heng Z, Cursons R, Young JM, Churchman J, Schipper LA, Rawlence NJ, Wood JR, Cooper A. A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications. Geoderma. 2016;274:114–25.

    CAS  Google Scholar 

  • Hutchinson GE. A treatise on limnology. In: Geography, physics and chemistry, vol. 1. New York: Wiley; 1957.

    Google Scholar 

  • Isagi Y, Suyama Y. In: Isagi Y, Suyama Y, editors. Single-pollen genotyping. Tokyo: Springer; 2010.

    Google Scholar 

  • Jackson ST. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat Sci Rev. 2012;49:1–15.

    Google Scholar 

  • Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–4.

    PubMed  PubMed Central  Google Scholar 

  • Jørgensen T, Haile J, Moller P, Andreev A, Boessenkool S, Rasmussen M, Kienast F, Coissac E, Taberlet P, Brochmann C, et al. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Mol Ecol. 2012;21:1989–2003.

    PubMed  Google Scholar 

  • Key FM, Posth C, Krause J, Herbig A, Bos KI. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet. 2017;33:508–20.

    CAS  PubMed  Google Scholar 

  • Kuch M, Rohland N, Betancourt J, Latorre C, Steppan S, Poinar H. Molecular analysis of a 11 700-year-old rodent midden from the Atacama Desert, Chile. Mol Ecol. 2002;11:913–24.

    CAS  PubMed  Google Scholar 

  • Lendvay B, Hartmann M, Brodbeck S, Nievergelt D, Reinig F, Zoller S, Parducci L, Gugerli F, Büntgen U, Sperisen C. Improved recovery of ancient DNA from subfossil wood – application to the world’s oldest Late Glacial pine forest. New Phytol. 2018;217:1737–48.

    CAS  PubMed  Google Scholar 

  • Lindhal T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.

    Google Scholar 

  • Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hübner S, Korol A, David M, Reiter E, Riehl S, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet. 2016;48:1089–93.

    CAS  PubMed  Google Scholar 

  • Matsuki Y, Isagi Y, Suyama Y. The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Mol Ecol Notes. 2007;7:194–8.

    CAS  Google Scholar 

  • Matsuki Y, Tateno R, Shibata M, Isagi Y. Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. Am J Bot. 2008;95:925–30.

    PubMed  Google Scholar 

  • Murray DC, Pearson SG, Fullagar R, Chase BM, Houston J, Atchison J, White NE, Bellgard MI, Clarke E, Macphail M, et al. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens. Quat Sci Rev. 2012;58:135–45.

    Google Scholar 

  • Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol. 2018;116:67–14.

    Google Scholar 

  • Nakazawa F, Uetake J, Suyama Y, Kaneko R, Takeuchi N, Fujita K, Motoyama H, Imura S, Kanda H. DNA analysis for section identification of individual Pinus pollen grains from Belukha glacier, Altai Mountains, Russia. Environ Res Lett. 2013;8:014032.

    Google Scholar 

  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of extracellular DNA in the environment. Environ Biosaf Res. 2007;6:37–53.

    CAS  Google Scholar 

  • Niemeyer B, Epp LS, Stoof-Leichsenring KR, Pestryakova LA, Herzschuh U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol Ecol Resour. 2017;26:41.

    Google Scholar 

  • Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, et al. Recalibrating Equus evolution using the genome sequence of an early middle Pleistocene horse. Nature. 2014;498:74–8.

    Google Scholar 

  • Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408.

    CAS  PubMed  Google Scholar 

  • Overballe-Petersen S, Willerslev E. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction. BioEssays. 2014;36:1005–10.

    PubMed  PubMed Central  Google Scholar 

  • Paffetti D, Vettori C, Caramelli D, Vernesi C, Lari M, Paganelli A, Paule L, Giannini R. Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evol Biol. 2007;7:S6.

    PubMed  PubMed Central  Google Scholar 

  • Pansu J, Giguet-Covex C, Ficetola GF, Gielly L, Boyer F, Zinger L, Arnaud F, Poulenard J, Taberlet P, Choler P. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol Ecol. 2015;24:1485–98.

    PubMed  Google Scholar 

  • Parducci L, Suyama Y, Lascoux M, Bennett KD. Ancient DNA from pollen: a genetic record of population history in Scots pine. Mol Ecol. 2005;14:2873–82.

    CAS  PubMed  Google Scholar 

  • Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, Bennett KD, Haile J, Matetovici I, Suyama Y, et al. Glacial survival of boreal trees in northern Scandinavia. Science. 2012;335:1083–6.

    CAS  PubMed  Google Scholar 

  • Parducci L, Matetovici I, Fontana SL, Bennett KD, Suyama Y, Haile J, Kjær KH, Larsen NK, Drouzas AD, Willerslev E. Molecular- and pollen-based vegetation analysis in lake sediments from Central Scandinavia. Mol Ecol. 2013;22:3511–24.

    PubMed  Google Scholar 

  • Parducci L, Väliranta M, Salonen JS, Ronkainen T, Matetovici I, Fontana SL, Eskola T, Sarala P, Suyama Y. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Philos Trans R Soc B. 2015;370:20130382.

    Google Scholar 

  • Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW. Ancient plant DNA in lake sediments. New Phytol. 2017;214:924–42.

    CAS  PubMed  Google Scholar 

  • Parducci L, Unneberg P, Pedersen MW, Han L, Lammers Y, Alsos Greve I, Salonen SJ, Väliranta M, Slotte T, Wohlfarth B. Shotgun sequencing Lateglacial-early Holocene lake sediment from Sweden to assess past plant diversity. 2018. Submitted.

    Google Scholar 

  • Paus A, Boessenkool S, Brochmann C, Epp LS, Fabel D, Haflidason H, Linge H. Lake store Finnsjøen – a key for understanding Lateglacial/early Holocene vegetation and ice sheet dynamics in the central Scandes Mountains. Quat Sci Rev. 2015;121:36–51.

    Google Scholar 

  • Pedersen MW, Ginolhac A, Orlando L, Olsen J, Andersen K, Holm J, Funder S, Willerslev E, Kjær KH. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat Sci Rev. 2013;75:161–8.

    Google Scholar 

  • Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M, Spens J, Thomsen PF, Bohmann K, Cappellini E, et al. Ancient and modern environmental DNA. Philos Trans R Soc B. 2015;370:20130383.

    Google Scholar 

  • Pedersen MW, Ruter A, Schweger C, Friebe H, Staff RA, Kjeldsen KK, Mendoza MLZ, Beaudoin AB, Zutter C, Larsen NK, et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature. 2016;537:45–9.

    CAS  PubMed  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils. 2009;45:219–35.

    CAS  Google Scholar 

  • Poinar H, Kuch M, Sobolik K, Barnes I, Stankiewicz A, Kuder T, Spaulding W, Bryant V, Cooper A, Pääbo S. A molecular analysis of dietary diversity for three archaic native Americans. Proc Natl Acad Sci U S A. 2001;98:4317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollmann B, Jacomet S, Schlumbaum A. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium (Eschenz, Switzerland). J Archaeol Sci. 2005;32:1471–80.

    Google Scholar 

  • Rawlence NJ, Lowe DJ, Wood JR, Young JM, Churchman GJ, Huang Y-T, Cooper A. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J Quat Sci. 2014;29:610–26.

    Google Scholar 

  • Rohland N, Hofreiter M. Comparison and optimization of ancient DNA extraction. BioTechniques. 2007;42:343–52.

    CAS  PubMed  Google Scholar 

  • Sjögren P, Edwards ME, Gielly L, Langdon CT, Croudace IW, Merkel MKF, Fonville T, Alsos IG. Lake sedimentary DNA accurately records twentieth century introductions of exotic conifers in Scotland. New Phytol. 2016;213:929–41.

    PubMed  PubMed Central  Google Scholar 

  • Slon V, Hopfe C, Weiß CL, Mafessoni F, la Rasilla de M, Lalueza-Fox C, Rosas A, Soressi M, Knul MV, Miller R, et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science. 2017;53:eaam9695.

    Google Scholar 

  • Smith O, Momber G, Bates R, Garwood P, Fitch S, Pallen M, Gaffney V, Allaby RG. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8,000 years ago. Science. 2015;347:998–1001.

    CAS  PubMed  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrügg R. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr Methods. 2009;54:2243–54.

    Google Scholar 

  • Sønstebø JH, Gielly L, Brysting AK, Elven R, Edwards M, Haile J, Willerslev E, Coissac E, Rioux D, Sannier J, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol Ecol Resour. 2010;10:1009–18.

    PubMed  Google Scholar 

  • Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman SJ, Harvey ES, Bunce M. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci Rep. 2017;7:1–11.

    CAS  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L. Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Biol Sci. 2010;277:661–71.

    Google Scholar 

  • Stoof-Leichsenring KR, Epp LS, Trauth MH, Tiedelman R. Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation. Mol Ecol. 2012;21:1918–30.

    CAS  PubMed  Google Scholar 

  • Stoof-Leichsenring KR, Herzschuh U, Pestryakova LA, Klemm J, Epp LS, Tiedelman R. Genetic data from algae sedimentary DNA reflect the influence of environment over geography. Sci Rep. 2015;5:12924.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suyama Y, Kawamuro K, Kinoshita I, Yoshimura K, Tsumura Y, Takahara H. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes Genet Syst. 1996;71:145–9.

    CAS  PubMed  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007;35:e14.

    PubMed  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50.

    CAS  PubMed  Google Scholar 

  • Terrat S, Christen R, Dequiedt S, Lelièvre M, Nowak V, Regnier T, Bachar D, Plassart P, Wincker P, Jolivet C, et al. Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol. 2012;5:135–41.

    CAS  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3:711–21.

    CAS  PubMed  Google Scholar 

  • Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev. 2013;37:936–54.

    CAS  PubMed  Google Scholar 

  • Vries J, Wackernagel W. Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil. 2005;266:91–104.

    Google Scholar 

  • Wagner S, Lagane F, Seguin-Orlando A, Schbert M, Leroy T, Guichox E, Chancerel E, Bech-Hebelstrup I, Bernand V, Billard C, et al. High-Throughput DNA sequencing of ancient wood. Mol Ecol. 2018;27(5):1138–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wales N, Andersen K, Cappellini E, Ávila-Arcos MC, Gilbert MTP. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS One. 2014;9:e86827–14.

    PubMed  PubMed Central  Google Scholar 

  • Weiß CL, Dannemann M, Prufer K, Burbano HA, Pickrell JK. Contesting the presence of wheat in the British Isles 8,000 years ago by assessing ancient DNA authenticity from low-coverage data. elife. 2015;4:e10005.

    PubMed  PubMed Central  Google Scholar 

  • Wetzel RG. Limnology. Lake and river ecosystems. 3rd ed. San Diego: Academic Press; 2001.

    Google Scholar 

  • Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P. Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci U S A. 1999;96:8017–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science. 2003;300:791–5.

    CAS  PubMed  Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Johnsen S, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science. 2007;317:111–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature. 2014;506:47–51.

    CAS  PubMed  Google Scholar 

  • Wood J, Wilmshurst J. Pollen analysis of coprolites reveals dietary details of heavy-footed moa (Pachyornis elephantopus) and coastal moa (Euryapteryx curtus) from Central Otago. N Z J Ecol. 2013;37:151–5.

    Google Scholar 

  • Wood JR, Wilmshurst JM. A protocol for subsampling Late Quaternary coprolites for multi-proxy analysis. Quat Sci Rev. 2016;138:1–5.

    Google Scholar 

  • Wood JR, Wilmshurst JM, Wagstaff SJ, Worthy TH, Rawlence NJ, Cooper A. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand’s extinct upland moa (Megalapteryx didinus). PLoS One. 2012;7:e40025.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoccoz NG. The future of environmental DNA in ecology. Mol Ecol. 2012;21:2031–8.

    PubMed  Google Scholar 

  • Yoccoz NG, Bråthen KA, Gielly L, Haile J, Edwards ME, Goslar T, Stedingk Von H, Brysting AK, Coissac E, Pompanon F, et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol Ecol. 2012;21:3647–55.

    CAS  PubMed  Google Scholar 

  • Ziesemer KA, Mann AE, Sankaranarayanan K, Schroeder H, Ozga AT, Brandt BW, Zaura E, Waters-Rist A, Hoogland M, Salazar-García DC, et al. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci Rep. 2015;5:16498.

    PubMed  PubMed Central  Google Scholar 

  • Zimmermann H, Raschke E, Epp L, Stoof-Leichsenring K, Schirrmeister L, Schwamborn G, Herzschuh U. The history of tree and Shrub Taxa on Bol’shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA and pollen data. Genes. 2017;8:273–28.

    PubMed Central  Google Scholar 

  • Zinger L, Chave J, Coissac E, Iribar A, Louisanna E, Manzi S, Schilling V, Schimann H, Sommeria-Klein G, Taberlet P. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol Biochem. 2016;96:16–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Parducci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parducci, L., Nota, K., Wood, J. (2018). Reconstructing Past Vegetation Communities Using Ancient DNA from Lake Sediments. In: Lindqvist, C., Rajora, O. (eds) Paleogenomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_38

Download citation

Publish with us

Policies and ethics