Skip to main content

Arrays of Dipolar Molecular Rotors in Tris(o-phenylenedioxy)cyclotriphosphazene

  • Chapter
  • First Online:
Molecular Machines and Motors

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

Regular two-dimensional or three-dimensional arrays of mutually interacting dipolar molecular rotors represent a worthy synthetic objective. Their dielectric properties, including possible collective behavior, will be a sensitive function of the location of the rotors, the orientation of their axes, and the size of their dipoles. Host–guest chemistry is one possible approach to gaining fine control over these factors. We describe the progress that has been achieved in recent years using tris(o-phenylenedioxy)cyclotriphosphazene as a host and a series of rod-shaped dipolar molecular rotors as guests. Structures of both surface and bulk inclusion compounds have been established primarily by solid-state nuclear magnetic resonance (NMR) and powder X-ray diffraction (XRD) techniques. Low-temperature dielectric spectroscopy revealed rotational barriers as low as 1.5 kcal/mol, but no definitive evidence for collective behavior has been obtained so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(ss)NMR:

(Solid-state) nuclear magnetic resonance

2-D:

Two-dimensional

3-D:

Three-dimensional

B97-D3/SVP//PM6:

Density functional theory calculation with the B97-D3 functional and SVP basis set at a geometry optimized with the PM6 method

Boc:

tert-Butoxycarbonyl

Bu:

n-Butyl

CP MAS:

Cross-polarization with magic angle spinning

DMF:

Dimethylformamide

DSC:

Differential scanning calorimetry

Et:

Ethyl

Hex:

n-Hexyl

Me:

Methyl

TBACl:

Tetra(n-butyl)ammonium chloride

TBAF:

Tetra(n-butyl)ammonium fluoride

THF:

Tetrahydrofuran

TIPS:

Tris(isopropyl)silyl

TMS:

Trimethylsilyl

TMSA:

Trimethylsilylacetylene

TPP:

Tris(o-phenylenedioxy)cyclotriphosphazene

Ts:

p-Toluenesulfonyl

Xmol%Y@TPP:

Inclusion compound containing X% of guest Y in TPP as host

XRD:

Powder X-ray diffraction

References

  1. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281

    Article  CAS  Google Scholar 

  2. Khuong T-AV, Nuñez JE, Godinez CE, Garcia-Garibay MA (2006) Crystalline molecular machines: a quest toward solid-state dynamics and function. Acc Chem Res 39:413

    Article  CAS  Google Scholar 

  3. Horansky RD, Magnera TF, Price JC, Michl J (2007) Artificial dipolar molecular rotors. In: Linke H, Månsson A (eds) Controlled nanoscale motion, lecture notes in physics, vol 711. Springer, Berlin and Heidelberg, p 303

    Chapter  Google Scholar 

  4. Crowly JD, Kay ER, Leigh DA (2008) Chemically driven artificial molecular machines. In: Shahinpoor M, Schneider H-J (eds) Intelligent materials. RSC, Cambridge, p 1

    Google Scholar 

  5. Garcia-Garibay MA (2008) Molecular machines: nanoscale gadgets. Nat Mat 7:431

    Article  CAS  Google Scholar 

  6. Michl J, Sykes ECH (2009) Molecular rotors and motors: recent advances and future challenges. ACS Nano 3:1042

    Article  CAS  Google Scholar 

  7. Augulis R, Klock M, Feringa BL, van Loosdrecht PHM (2009) Light-driven rotary molecular motors: an ultrafast optical study. Phys Status Solidi C 6:181

    Article  CAS  Google Scholar 

  8. Xue M, Wang KL (2012) Molecular rotors as switches. Sensors 12:11612

    Article  CAS  Google Scholar 

  9. Lensen D, Elemans JAAW (2012) Artificial molecular rotors and motors on surfaces: STM reveals and triggers. Soft Matter 8:9053

    Article  CAS  Google Scholar 

  10. Ghosn MW, Wolf C (2011) Synthesis, conformational stability and asymmetric transformation of atropisomeric 1,8-bisphenolnaphthalenes. J Org Chem 76:3888

    Article  CAS  Google Scholar 

  11. Yang CH, Prabhakar C, Huang SH, Lin YC, Tan WS, Misra NC, Sun WT, Yang JS (2011) Redox-gated slow-fast-stop molecular rotor. Org Lett 13:5632

    Article  CAS  Google Scholar 

  12. Dial BE, Pellechia PJ, Smith MD, Shimizu KD (2012) Proton grease: an acid accelerated molecular rotor. J Am Chem Soc 134:3675

    Article  CAS  Google Scholar 

  13. Gimzewski JK, Joachim C, Schlitter RR, Langlias V, Tang H, Johannsen I (1998) Rotation of a single molecule within a supramolecular bearing. Science 281:531

    Article  CAS  Google Scholar 

  14. Stipe BC, Rezaei MA, Ho W (1998) Inducing and viewing the rotational motion of a single molecule. Science 279:1907

    Article  CAS  Google Scholar 

  15. Rao BV, Kwon K-Y, Liu A, Bartels L (2003) Spin until the excitation comes. J Chem Phys 119:10879

    Article  CAS  Google Scholar 

  16. Sainoo Y, Kim Y, Komeda T, Kawai M, Shigekawa H (2003) Observation of cis-2-butene molecule on Pd(110) by cryogenic STM: site determination using tunneling-current-induced rotation. Surf Sci 536:L403

    Article  CAS  Google Scholar 

  17. Delden RA, ter Wiel MKJ, Pollard MM, Vicario J, Koumura N, Feringa BL (2005) Unidirectional molecular motor on a gold surface. Nature 437:1337

    Article  Google Scholar 

  18. Tierney HL, Murphy CJ, Jewell AD, Baber AE, Iski EV, Khodaverdian HY, McGuire AF, Klebanov N, Sykes ECH (2011) Experimental demonstration of a single-molecule electric motor. Nat Nanotechnol 6:625

    Article  CAS  Google Scholar 

  19. Zheng X, Mulcahy ME, Horinek D, Galeotti F, Magnera TF, Michl J (2004) Dipolar and non-polar altitudinal molecular rotors mounted on a Au(111) surface. J Am Chem Soc 126:4540

    Article  CAS  Google Scholar 

  20. Clarke LI, Horinek D, Kottas GS, Varaksa N, Magnera TF, Hinderer TP, Horansky RD, Michl J, Price JC (2002) Dielectric response of chloromethylsilyl and dichloromethylsilyl dipolar rotors on fused silica surfaces. Nanotechnology 13:533

    Article  CAS  Google Scholar 

  21. Eelkema R, Pollard MM, Vicario J, Katsonis N, Ramon BS, Bastiaansen CWM, Broer DJ, Feringa BL (2006) Molecular machines: nanomotor rotates microscale objects. Nature 440:163

    Article  CAS  Google Scholar 

  22. Pollard MM, Lubomska M, Rudolf P, Feringa BL (2007) Controlled rotary motion in a monolayer of molecular motors. Angew Chem Int Ed 46:1278

    Article  CAS  Google Scholar 

  23. Carroll GT, Pollard MM, van Delden R, Feringa BL (2010) Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem Sci 1:97

    Article  CAS  Google Scholar 

  24. O’Brien ZJ, Karlen SD, Khan S, Garcia-Garibay MA (2010) Solid state molecular rotors with perdeuterated stators: mechanistic insights from biphenylene rotational dynamics in ordered and disordered crystal forms. J Org Chem 75:2482

    Article  Google Scholar 

  25. Rodriguez-Molina B, Farfan N, Romero M, Mendez-Stivalet JM, Santillan R, Garcia-Garibay MA (2011) Anisochronous dynamics in a crystalline array of steroidal molecular rotors: evidence of correlated motion within 1D helical domains. J Am Chem Soc 133:7280

    Article  CAS  Google Scholar 

  26. Mulcahy ME, Magnera TF, Michl J (2009) Molecular rotors on Au(111): rotator orientation from IR spectroscopy. J Phys Chem C 113:20698

    Article  CAS  Google Scholar 

  27. Lemouchi C, Iliopoulous K, Zorina L, Simonov S, Wzietek P, Cauchy T, Rodríguez-Fortea A, Canadell E, Kaleta J, Michl J, Gindre D, Chrysos M, Batail P (2013) Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J Am Chem Soc 135:9366

    Article  CAS  Google Scholar 

  28. Dominguez Z, Dang H, Strouse MJ, Garcia-Garibay MA (2002) Molecular ‘compasses’ and ‘gyroscopes’. I. Expedient synthesis and solid state dynamics of an open rotor with a bis(triarylmethyl) frame. J Am Chem Soc 124:2398

    Article  CAS  Google Scholar 

  29. Rodriguez-Molina B, Ochoa ME, Farfan N, Santillan R, Garcia-Garibay MA (2009) Synthesis, characterization and rotational dynamics of crystalline molecular compasses with n-heterocyclic rotators. J Org Lett 74:8554

    Article  CAS  Google Scholar 

  30. Karlen SD, Reyes H, Taylor RE, Khan SI, Hawthorne MF, Garcia-Garibay MA (2010) Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals. Proc Natl Acad Sci U S A 107:14973

    Article  CAS  Google Scholar 

  31. Winston EB, Lowell PJ, Vacek J, Chocholoušová J, Michl J, Price JC (2008) Dipolar molecular rotors in the metal-organic framework crystal IRMOF-2. Phys Chem Chem Phys 10:5188

    Article  CAS  Google Scholar 

  32. Gould SL, Tranchemontagne D, Yaghi OM, Garcia-Garibay MA (2008) Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. J Am Chem Soc 130:3246

    Article  CAS  Google Scholar 

  33. Lemouchi C, Vogelsberg CS, Zorina L, Simonov S, Batail P, Brown S, Garcia-Garibay MA (2011) Ultra-fast rotors for molecular machines and functional materials via halogen bonding: crystals of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane with distinct gigahertz rotation at two sites. J Am Chem Soc 133:6371

    Article  CAS  Google Scholar 

  34. Rodriguez-Molina B, Perez-Estrada S, Garcia-Garibay MA (2013) Amphidynamic crystals of a steroidal bicyclo[2.2.2]octane rotor: a high symmetry group that rotates faster than smaller methyl and methoxy groups. J Am Chem Soc 135:10388

    Article  CAS  Google Scholar 

  35. Hughs M, Jimenez M, Khan S, Garcia-Garibay MA (2013) Synthesis, rotational dynamics, and photophysical characterization of a crystalline linearly conjugated phenyleneethynylene molecular dirotor. J Org Chem 78:5293

    Article  CAS  Google Scholar 

  36. Horansky RD, Clarke LI, Winston EB, Price JC, Karlen SD, Jarowski PD, Santillan R, Garcia-Garibay MA (2006) Dipolar rotor-rotor interactions in a difluorobenzene molecular rotor crystal. Phys Rev B 74:054306

    Article  Google Scholar 

  37. Scott JF et al (2007) Applications of modern ferroelectrics. Science 315:954

    Article  CAS  Google Scholar 

  38. Rozenbaum VM, Ogenko VM, Chuiko AA (1991) Vibrational and orientational states of surface atomic groups. Sov Phys Usp 34:883

    Article  Google Scholar 

  39. Malozovsky YM, Rozenbaum VM (1991) Orientational ordering in two-dimensional systems with long-range interaction. Phys A 175:127

    Article  Google Scholar 

  40. Rozenbaum VM (1995) Ground state and vibrations of dipoles on a honeycomb lattice. Phys Rev B 51:1290

    Article  CAS  Google Scholar 

  41. Rozenbaum VM, Morozov AN, Lin SH (2003) Orientational regularities in two-dimensional quasidipole system with degenerate ground states. Phys Rev B 68:155405

    Article  Google Scholar 

  42. Hashimoto K-Y (2010) Surface acoustic wave devices in telecommunications, modelling and simulation. Springer, Berlin

    Google Scholar 

  43. Kobr L, Zhao K, Shen Y, Comotti A, Bracco S, Shoemaker RK, Sozzani P, Clark NA, Price JC, Rogers CT, Michl J (2012) Inclusion compound based approach to arrays of artificial dipolar molecular rotors. a surface inclusion. J Am Chem Soc 134:10122

    Article  CAS  Google Scholar 

  44. Atwood JL, Davies JED, MacNicol DD (1984) Inclusion compounds, vol 1–3. Academic, London

    Google Scholar 

  45. Allcock HR, Siegel LA (1964) Phosphonitrilic compounds. III. Molecular inclusion compounds of tris(o-phenylenedioxy)phosphonitrile trimer. J Am Chem Soc 86:5140

    Article  CAS  Google Scholar 

  46. Sozzani P, Comotti A, Simonutti R, Meersmann T, Logan JW, Pines A (2000) A porous crystalline molecular solid explored by hyperpolarized xenon. Angew Chem Int Ed 39:2695

    Article  CAS  Google Scholar 

  47. Sozzani P, Bracco S, Comotti A, Ferretti L, Simonutti R (2005) Methane and carbon dioxide storage in a porous van der Waals crystal. Angew Chem Int Ed 44:1816

    Article  CAS  Google Scholar 

  48. Meersmann T, Logan JW, Simonutti R, Caldarelli S, Sozzani P, Comotti A, Kaiser L, Pines A (2000) Exploring single-file diffusion in one-dimensional nanochannels by laser-polarized 129Xe NMR spectroscopy. J Phys Chem 104:11665

    Article  CAS  Google Scholar 

  49. Meitrovitch E, Belsky I, Vega S (1984) Deuterium nuclear magnetic resonance line-shape study of structure and mobility in a solid benzene-cyclophosphazene inclusion compound. J Phys Chem 88:1522

    Article  Google Scholar 

  50. Allcock HR, Levin ML, Whittle RR (1986) Tris(o-phenylenedioxy)cyclotriphosphazene: the clathration-induced monoclinic to hexagonal solid-state transition. Inorg Chem 25:41

    Article  CAS  Google Scholar 

  51. Primrose AP, Parvez M, Allcock HR (1997) Inclusion adduct formation between tris(o-phenylenedioxy)cyclotriphosphazene and poly(ethylene oxide) or polyethylene. Macromolecules 30:670

    Article  CAS  Google Scholar 

  52. Comotti A, Simonutti R, Catel G, Sozzani P (1999) Isolated linear alkanes in aromatic nanochannels. Chem Mater 11:1476

    Article  CAS  Google Scholar 

  53. Comotti A, Simonutti R, Stramare S, Sozzani P (1999) 13C and 31P MAS NMR investigations of spirocyclotriphosphazene nanotubes. Nanotechnology 10:70

    Article  CAS  Google Scholar 

  54. Brustolon M, Barbon A, Bortolus M, Maniero AL, Sozzani P, Comotti A, Simonutti R (2004) Isolated linear alkanes in aromatic nanochannels. J Am Chem Soc 126:15512

    Article  CAS  Google Scholar 

  55. Sozzani P, Comotti A, Bracco S, Simonutti R (2004) Cooperation of multiple CH•••π interactions to stabilize polymers in aromatic nanochannels as indicated by 2D solid state NMR. Chem Comm 768

    Google Scholar 

  56. Sozzani P, Comotti A, Bracco S, Simonutti R (2004) A novel family of supramolecular frameworks of polyconjugated molecules hosted in aromatic nanochannels. Angew Chem Int Ed 43:2792

    Article  CAS  Google Scholar 

  57. Bracco S, Comotti A, Valsesia P, Beretta M, Sozzani P (2010) Self-assembly of 1,4-cis-polybutadiene and an aromatic host to fabricate nanostructured crystals by CH•••π interactions. CrystEngComm 12:2318

    Article  CAS  Google Scholar 

  58. Bracco S, Comotti A, Ferretti L, Sozzani P (2011) Supramolecular aggregation of block copolymers in the solid state as assisted by the selective formation of inclusion crystals. J Am Chem Soc 133:8982

    Article  CAS  Google Scholar 

  59. Schwab PFH, Levin MD, Michl J (1999) Molecular rods. 1. Simple axial rods. Chem Rev 99:1863

    Article  CAS  Google Scholar 

  60. Bohn RK, Bohn MD (1971) Molecular structures of 1,2-, 1,7-, and 1,12-dicarba-closo-dodecaborane(12), B10C2H12. Inorg Chem 10:350

    Article  CAS  Google Scholar 

  61. Masao O, Mariko U, Masahiko A, Junko Y, Ichiro Y (1986) Microwave spectra and structure of 1,2-dichlorobenzene-3d and -4d. J Mol Struct 147:77

    Article  Google Scholar 

  62. Hurdis EC, Smyth CP (1942) Dipole moments in the vapor state and resonance effects in some substituted benzenes. J Am Chem Soc 64:2212

    Article  CAS  Google Scholar 

  63. Terazima M, Yamauchi S, Hirota N, Kitao O, Nakatsuji H (1986) Geometries and energies of the excited states of pyridazine studied by SAC and SAC-CI calculations. Chem Phys 107:81

    Article  CAS  Google Scholar 

  64. Li H, Franks KJ, Hanson RJ, Kong W (1998) Brute force orientation and alignment of pyridazine probed by resonantly enhanced multiphoton ionization. J Phys Chem A 102:8084

    Article  CAS  Google Scholar 

  65. Schöberl U, Magnera TF, Harrison R, Fleischer F, Pflug JF, Schwab PFH, Meng X, Lipiak D, Noll B, Allured VS, Rudalevige T, Lee S, Michl J (1997) Towards a hexagonal grid polymer: synthesis, coupling, and chemically reversible surface-pinning of the star connectors, 1,3,5-C6H3(CB10H10CX)3. J Am Chem Soc 119:3907

    Article  Google Scholar 

  66. Kobr L, Zhao K, Shen Y, Polívková K, Shoemaker RK, Clark NA, Price JC, Rogers CT, Michl J (2013) Inclusion compound based approach to arrays of artificial dipolar molecular rotors. Bulk inclusions. J Org Chem 78:1768

    Article  CAS  Google Scholar 

  67. Kobr L, Zhao K, Shen Y, Shoemaker RK, Rogers CT, Michl J (2013) Inclusion compound based approach to forming arrays of artificial dipolar molecular rotors. A search for optimal rotor structures. Adv Mater 25:443

    Google Scholar 

  68. Kobr L, Zhao K, Shen Y, Shoemaker RK, Rogers CT, Michl J (2014) Trisophenylenedioxycyclophosphazene (TPP) inclusion compounds containing a dipolar molecular rotor. Cryst Growth Des. doi:10.1117/2.1201106.003755

    Google Scholar 

  69. Wiley RHJ (1987) Poly(DMI-1, 2-diazinediylethene-l, 2-diols). Macromol Sci Chem A24:1183

    Article  CAS  Google Scholar 

  70. Nakayama J, Konishi T, Ishii A, Hoshino M (1989) Preparation of 3,6-disubstituted pyridazines from 3-thiapentane-1,5-diones via 2,7-dihydro-1,4,5-thiadiazepines. Bull Chem Soc Jpn 62:2608

    Article  CAS  Google Scholar 

  71. Achelle S, Ple N, Kreher D, Mathevet F, Turck A, Attias AJ (2008) Oligomers containing ethynylpyridazines moieties: synthesis, fluorescence and liquid crystalline properties. Diazines 50. Heterocycles 75:357

    Article  CAS  Google Scholar 

  72. Messner M, Kozhushkov SI, de Meijere A (2000) Nickel- and palladium-catalyzed cross-coupling reactions at the bridgehead of bicyclo[1.1.1]pentane derivatives: a convenient access to liquid crystalline compounds containing bicyclo[1.1.1]pentane moieties. Eur J Org Chem 1137

    Google Scholar 

  73. Kaleta J, Nečas M, Mazal C (2012) 1,3-Diethynylbicyclo[1.1.1]pentane, a useful molecular building block. Eur J Org Chem 4783

    Google Scholar 

  74. Schwab P, Noll BC, Michl J (2002) Synthesis and structure of trigonal and tetragonal connectors for a ‘Tinkertoy’ construction set. J Org Chem 67:5476

    Article  CAS  Google Scholar 

  75. Kaleta J, Mazal C (2011) A triangular macrocycle altering planar and bulky sections in its molecular backbone. Org Lett 13:1326

    Article  CAS  Google Scholar 

  76. Allcock HR, Walsh EJ (1971) Phosphonitrilic compounds. X. Synthesis of spirophosphazenes with five-, six-, and seven-membered exocyclic rings at phosphorus. Inorg Chem 10:1643

    Article  CAS  Google Scholar 

  77. Ito N, Esaki H, Maesawa T, Imamiya E, Maegawa T, Sajiki H (2008) Efficient and selective Pt/C-catalyzed H-D exchange reaction of aromatic rings. Bull Chem Soc Jpn 81:278

    Article  CAS  Google Scholar 

  78. Tonelli A (1988) Spectroscopy and polymer microstructure: the conformational connexion. Wiley-VCH, Deerfeld Beach

    Google Scholar 

  79. Azaroff LV, Buerger MJ (1958) The powder method in X-ray crystallography. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  80. Comotti A, Bracco S, Ferretti L, Mauri M, Simonutti R, Sozzani P (2007) A single-crystal imprints macroscopic orientation on xenon atoms. Chem Comm 4:350

    Article  Google Scholar 

  81. Zhao K (2013) Ph.D. Dissertation, University of Colorado at Boulder, Boulder

    Google Scholar 

  82. Sozzani P, Bracco S, Comotti A, Ferretti L, Simonutti R (2005) Methane and carbon dioxide storage in a porous van der Waals crystal. Angew Chem 117:1850

    Article  Google Scholar 

  83. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024

    Article  CAS  Google Scholar 

  84. Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358

    Article  CAS  Google Scholar 

  85. Daniel VV (1967) Dielectric relaxation. Academic, New York

    Google Scholar 

  86. Debye P (1929) Polar molecules. Dover Publications, Inc., New York

    Google Scholar 

  87. Kremer F, Schoenhals A (2002) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  88. Kobr L (2011) Toward regular arrays of surface-mounted molecular rotors. Ph.D. Dissertation, University of Colorado at Boulder, Boulder

    Google Scholar 

Download references

Acknowledgement

This material is based upon work supported in Prague by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013) ERC grant agreement no. 227756 and by the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic RVO: 61388963, and in Boulder by the National Science Foundation under Grant No. CHE 0848663. We are grateful to Dr. Martina Čižková for taking the TEM image shown in Fig. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Michl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, K., Dron, P.I., Kaleta, J., Rogers, C.T., Michl, J. (2014). Arrays of Dipolar Molecular Rotors in Tris(o-phenylenedioxy)cyclotriphosphazene. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_513

Download citation

Publish with us

Policies and ethics