Skip to main content

Crystal Structure Prediction and Its Application in Earth and Materials Sciences

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 345))

Abstract

Evolutionary algorithms, based on physically motivated forms of variation operators and local optimization, proved to be a powerful approach in determining the crystal structure of materials. This review summarized the recent progress of the USPEX method as a tool for crystal structure prediction. In particular, we highlight the methodology in (1) prediction of molecular crystal structures and (2) variable-composition structure predictions, and their applications to a series of systems, including Mg(BH4)2, Xe-O, Mg-O compounds, etc. We demonstrate that this method has a wide field of applications in both computational materials design and studies of matter at extreme conditions.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Two extended formulations of this problem include simultaneous searches for stable chemical compositions and structures in multicomponent systems, and finding the structures (and compositions) that possess required physical properties.

References

  1. Maddox J (1988) Crystals from first principles. Nature 335:201

    Article  Google Scholar 

  2. Gavezzotti A (1994) Are crystal structures predictable? Acc Chem Res 27:309–314

    Article  CAS  Google Scholar 

  3. Oganov AR (ed) (2010) Modern methods of crystal structure prediction. Wiley, Weinheim

    Google Scholar 

  4. Pannetier J, Bassas-Alsina J, Rodriguez-Carvajal J et al (1990) Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature 346:343–345

    Article  CAS  Google Scholar 

  5. Schon JC, Jansen M (1996) First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew Chem Int Ed Engl 35:1286–1304

    Article  Google Scholar 

  6. Martonak R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello–Rahman method revisited. Phys Rev Lett 90:075503

    Article  CAS  Google Scholar 

  7. Zhu Q, Oganov AR, Lyakhov AO (2012) Evolutionary metadynamics: a novel method to predict crystal structures. CrystEngComm 14:3596–3601

    Article  CAS  Google Scholar 

  8. Woodley MS, Battle DP, Gale DJ et al (1999) The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys Chem Chem Phys 1:2535–2542

    Article  CAS  Google Scholar 

  9. Freeman CM, Newsam JM, Levine SM et al (1993) Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide. J Mater Chem 3:531–535

    Article  CAS  Google Scholar 

  10. Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    Article  CAS  Google Scholar 

  11. Goedecker S (2004) Minima hopping: searching for the global minimum of the potential energy surface of complex molecular systems without invoking thermodynamics. J Chem Phys 120:9911–9917

    Article  CAS  Google Scholar 

  12. Curtarolo S, Morgan D, Persson K et al (2003) Crystal structures with data mining of quantum calculations. Phys Rev Lett 91:135503

    Article  Google Scholar 

  13. Oganov AR, Glass CW (2006) Crystal structure prediction using evolutionary algorithms: principles and applications. J Chem Phys 124:244704

    Article  Google Scholar 

  14. Lyakhov AL, Oganov AR, Valle M (2010) How to predict very large and complex crystal structures. Comput Phys Comm 181:1623–1632

    Article  CAS  Google Scholar 

  15. Oganov AR, Lyakhov AO, Valle M (2011) How evolutionary crystal structure prediction works – and why. Acc Chem Res 44:227–237

    Article  CAS  Google Scholar 

  16. Zhu Q, Oganov AR, Glass CW et al (2012) Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystallogr B68:215–226

    Article  Google Scholar 

  17. Lyakhov AO, Oganov AR, Stokes HT et al (2013) New developments in evolutionary structure prediction algorithm USPEX. Comput Phys Comm 184:1172–1182

    Article  CAS  Google Scholar 

  18. Zhu Q (2013) Crystal structue prediction and its applications to Earth and materials sciences. Dissertation, Stony Brook University

    Google Scholar 

  19. Chaplot SL, Rao KR (2006) Crystal structure prediction – evolutionary or revolutionary crystallography? Curr Sci 91:1448–1450

    Google Scholar 

  20. Oganov AR, Chen J, Gatti C et al (2009) Ionic high-pressure form of elemental boron. Nature 457:863–867

    Article  CAS  Google Scholar 

  21. Ma Y, Eremets MI, Oganov AR et al (2009) Transparent dense sodium. Nature 458:182–185

    Article  CAS  Google Scholar 

  22. Li Q, Ma Y, Oganov AR et al (2009) Superhard monoclinic polymorph of carbon. Phys Rev Lett 102:175506

    Article  Google Scholar 

  23. Zhu Q, Oganov AR, Salvado MA et al (2011) Denser than diamond: ab initio search for superdense carbon allotropes. Phys Rev B 83:193410

    Article  Google Scholar 

  24. Lyakhov AO, Oganov AR (2011) Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys Rev B 84:092103

    Article  Google Scholar 

  25. Zhu Q, Jung DY, Oganov AR et al (2013) Stability of xenon oxides at high pressures. Nat Chem 5:61–65

    Article  Google Scholar 

  26. Zhu Q, Oganov AR, Lyahkov AO (2013) Novel stable compounds in the Mg–O system under high pressure. Phys Chem Chem Phys 15:7696–7700

    Article  CAS  Google Scholar 

  27. Zhou XF, Oganov AR, Qian GR et al (2012) First-principles determination of the structure of magnesium borohydride. Phys Rev Lett 109:245503

    Article  Google Scholar 

  28. Qian GR, Dong X, Zhou XF et al (2013) Variable cell nudged elastic band method for studying solid–solid structural phase transitions. Comput Phys Comm 184:2111–2118

    Article  CAS  Google Scholar 

  29. Oganov AR, Valle M (2009) How to quantify energy landscapes of solids. J Chem Phys 130:104504

    Article  Google Scholar 

  30. Price SL (2004) The computational prediction of pharmaceutical crystal structures and polymorphism. Adv Drug Deliv Rev 56:301–319

    Article  CAS  Google Scholar 

  31. Lommerse JPM, Motherwell WDS, Ammon HL et al (2000) A test of crystal structure prediction of small organic molecules. Acta Crystallogr B56:697–714

    Article  CAS  Google Scholar 

  32. Motherwell WDS, Ammon HL, Dunitz JD et al (2002) Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr B58:647–661

    Article  CAS  Google Scholar 

  33. Day GM, Motherwell WDS, Ammon HL et al (2005) A third blind test of crystal structure prediction. Acta Crystallogr B61:511–527

    Article  CAS  Google Scholar 

  34. Day GM, Cooper TG, Cruz-Cabeza AJ et al (2009) Significant progress in predicting the crystal structures of small organic molecules: a report on the fourth blind test. Acta Crystallogr B65:107–125

    Article  Google Scholar 

  35. Bardwell DA, Adjiman CS, Arnautova YA et al (2011) Towards crystal structure prediction of complex organic compounds: a report on the fifth blind test. Acta Crystallogr B67:535–551

    Article  Google Scholar 

  36. Day GM (2011) Current approaches to predicting molecular organic crystal structures. Crystallogr Rev 17:3–52

    Article  Google Scholar 

  37. Brock CP, Dunitz JD (1994) Towards a grammar of crystal packing. Chem Mater 6:1118–1127

    Article  CAS  Google Scholar 

  38. Baur WH, Kassner D (1992) The perils of CC: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr B48:356–369

    Article  CAS  Google Scholar 

  39. Johannesson GH, Bligaard T, Ruban AV et al (2002) Combined electronic structure and evolutionary search approach to materials design. Phys Rev Lett 88(255506):2002

    Google Scholar 

  40. Oganov AR, Ma Y, Lyakhov AO et al (2010) Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev Mineral Geochem 71:271–298

    Article  CAS  Google Scholar 

  41. Lyakhov AO, Oganov AR (2010) Crystal structure prediction using evolutionary approach. In: Oganov AR (ed) Modern methods of crystal structure prediction. Wiley, Weinheim, pp 147–180

    Chapter  Google Scholar 

  42. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Generalize gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  44. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  45. Tekin A, Caputo R, Zuttel A (2010) First-principles determination of the ground-state structure of LiBH4. Phys Rev Lett 104:215501

    Article  Google Scholar 

  46. George L, Drozd V, Saxena SK et al (2009) Structural phase transitions of Mg(BH4)2 under pressure. J Phys Chem C 113:15087–15090

    Article  CAS  Google Scholar 

  47. Cerny R, Filinchuk Y, Hagemann H et al (2007) Magnesium borohydride: synthesis and crystal structure. Angew Chem Int Ed 46:5765–5767

    Article  CAS  Google Scholar 

  48. Her J, Stephens PW, Gao Y et al (2007) Structure of unsolvated magnesium borohydride Mg(BH4)2. Acta Crystallogr B63:561–568

    Article  Google Scholar 

  49. Cerny R, Ravnsbak DB, Schouwink P et al (2012) Potassium zinc borohydrides containing triangular [Zn(BH4)3] and tetrahedral [Mg(BH4)xCl4-x]2− anions. J Phys Chem C 116:1563–1571

    Article  CAS  Google Scholar 

  50. Ozolins V, Majzoub EH, Wolverton C (2008) First-principles prediction of a ground state crystal structure of magnesium borohydride. Phys Rev Lett 100:135501

    Article  CAS  Google Scholar 

  51. Voss J, Hummelshj JS, Odziana Z et al (2009) Structural stability and decomposition of Mg(BH4)2 isomorphsan ab initio free energy study. J Phys Condens Matter 21:012203

    Article  CAS  Google Scholar 

  52. Zhou XF, Qian GR, Zhou J et al (2009) Crystal structure and stability of magnesium borohydride from first principles. Phys Rev B 79:212102

    Article  Google Scholar 

  53. Filinchuk Y, Richter B, Jensen TR (2011) Porous and dense magnesium borohydride frameworks: synthesis, stability, and reversible absorption of guest species. Angew Chem Int Ed 50:11162–11166

    Article  CAS  Google Scholar 

  54. Fan J, Bao K, Duan DF et al (2012) High volumetric hydrogen density phases of magnesium borohydride at highpressure: a first-principles study. Chin Phys B 21:086104

    Article  Google Scholar 

  55. Bil A, Kolb B, Atkinson R et al (2011) Van der Waals interactions in the ground state of Mg(BH4)2 from density functional theory. Phys Rev B 83:224103

    Article  Google Scholar 

  56. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  57. Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  58. Levy HA, Agron PA (1963) The crystal and molecular structure of xenon difluoride by neutron diffraction. J Am Chem Soc 85:241–242

    Article  CAS  Google Scholar 

  59. Templeton DH, Zalkin A, Forrester JD et al (1963) Crystal and molecular structure of xenon trioxide. J Am Chem Soc 85:817

    Article  CAS  Google Scholar 

  60. Hoyer S, Emmler T, Seppelt K (2006) The structure of xenon hexafluoride in the solid state. J Fluorine Chem 127:1415–1422

    Article  CAS  Google Scholar 

  61. Kim M, Debessai M, Yoo CS (2010) Two- and three-dimensional extended solids and metallization of compressed XeF2. Nat Chem 2:784–788

    Article  CAS  Google Scholar 

  62. Somayazulu M, Dera P, Goncharov AF et al (2010) Pressure-induced bonding and compound formation in xenon-hydrogen solids. Nat Chem 2:50–53

    Article  CAS  Google Scholar 

  63. Smith DF (1963) Xenon trioxide. J Am Chem Soc 85:816–817

    Article  CAS  Google Scholar 

  64. Selig H, Claassen HH, Chernick CL et al (1964) Xenon tetroxide: preparation and some properties. Science 143:1322–1323

    Article  CAS  Google Scholar 

  65. Brock DS, Schrobilgen GJ (2011) Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth missing xenon. J Am Chem Soc 133:6265–626

    Article  CAS  Google Scholar 

  66. Grochala W (2007) Atypical compounds of gases, which have been called 'noble'. Chem Soc Rev 36:1632–1655

    Article  CAS  Google Scholar 

  67. Anders E, Owen T (1977) Mars and Earth: origin and abundance of volatiles. Science 198:453–465

    Article  CAS  Google Scholar 

  68. Sanloup C, Hemley RJ, Mao HK (2002) Evidence for xenon silicates at high pressure and temperature. Geophys Res Lett 29:1883–1886

    Article  Google Scholar 

  69. Sanloup C, Schmidt BC, Perez EMC (2005) Retention of xenon in quartz and Earth’s missing xenon. Science 310:1174–1177

    Article  CAS  Google Scholar 

  70. Oganov AR, Ma Y, Glass CW et al (2007) Evolutionary crystal structure prediction: overview of the USPEX method and some of its applications. Psi-K Newsletter 84:142–171

    Google Scholar 

  71. Caldwell WA, Nguyen JH, Pfrommer BG et al (1997) Structure, bonding, and geochemistry of xenon at high pressures. Science 277:930–933

    Article  CAS  Google Scholar 

  72. Urusov VS (1977) Theory of isomorphous miscibility. Nauka, Moscow

    Google Scholar 

  73. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  74. Frost DJ, Liebske C, Langenhorst F et al (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409–412

    Article  CAS  Google Scholar 

  75. Zhang FW, Oganov AR (2006) Valence state and spin transitions of iron in Earth's mantle silicates. Earth Planet Sci Lett 249:436–443

    Article  CAS  Google Scholar 

  76. Lin J, Heinz DL, Mao HK et al (2003) Stability of magnesiowstite in Earth's lower mantle. Proc Natl Acad Sci U S A 100:4405–4408

    Article  CAS  Google Scholar 

  77. Mazin II, Fei Y, Downs R et al (1998) Possible polytypism in FeO at high pressures. Am Mineral 83:451–457

    CAS  Google Scholar 

  78. Oganov AR, Martonak R, Laio A et al (2005) Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 postperovskite phase. Nature 438:1142–1144

    Article  CAS  Google Scholar 

  79. Duffy TS, Hemley RJ, Mao HK (1995) Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa. Phys Rev Lett 74:1371–1374

    Article  CAS  Google Scholar 

  80. Mehl MJ, Cohen RE, Krakauer H (1988) Linearized augmented plane wave electronic structure calculations for MgO and CaO. J Geophys Res 118:8009–8022

    Article  Google Scholar 

  81. Oganov AR, Gillan MJ, Price GD (2003) Ab initio lattice dynamics and structural stability of MgO. J Chem Phys 118:10174–10182

    Article  CAS  Google Scholar 

  82. Belonoshko AB, Arapan S, Martonak R et al (2010) MgO phase diagram from first principles in a wide pressure–temperature range. Phys Rev B 81:054110

    Article  Google Scholar 

  83. Wriedt H (1987) The MgO (magnesium-oxygen) system. J Phase Equil 8:227–233

    CAS  Google Scholar 

  84. Recio JM, Pandey R (1993) Ab initio study of neutral and ionized microclusters of MgO. Phys Rev A 47:2075–2082

    Article  CAS  Google Scholar 

  85. Wang ZL, Bentley J, Kenik EA (1992) In-situ formation of MgO2 thin films on MgO single-crystal surfaces at high temperatures. Surf Sci 273:88–108

    Article  CAS  Google Scholar 

  86. Vannerberg N (2007) Peroxides, superoxides, and ozonides of the metals of groups Ia, IIa, and IIb. In: Cotton FA (ed) Progress in inorganic chemistry. Wiley, New York, p 2007. ISBN 9780470166055

    Google Scholar 

  87. Abrahams SC, Kalnajs J (1954) The formation and structure of magnesium peroxide. Acta Crystallogr 7:838–842

    Article  CAS  Google Scholar 

  88. Efthimiopoulos I, Kunc K, Karmakar S et al (2010) Structural transformation and vibrational properties of BaO2 at high pressures. Phys Rev B 82(134125):2010

    Google Scholar 

  89. Vannerberg NG (1959) The formation and structure of magnesium peroxide. Ark Kemi 14:99–105

    CAS  Google Scholar 

  90. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106

    Article  Google Scholar 

  91. Olijnyk H, Holzapfel WB (1985) High-pressure structural phase transition in Mg. Phys Rev B 31:8412–4683

    Article  Google Scholar 

  92. Wentzcovitch RM, Cohen ML (1988) Theoretical model for the hcp-bcc transition in Mg. Phys Rev B 37:5571–5576

    Article  CAS  Google Scholar 

  93. Li P, Gao G, Wang Y et al (2010) Crystal structures and exotic behavior of magnesium under pressure. J Phys Chem C 114:21745–21749

    Article  CAS  Google Scholar 

  94. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B25:925–946

    Article  Google Scholar 

  95. Waber JT, Cromer DT (1965) Orbital radii of atoms and ions. J Chem Phys 42:4116–4123

    Article  CAS  Google Scholar 

  96. Neumann MA, Perrin M (2005) The computational prediction of pharmaceutical crystal structures and polymorphism. J Phys Chem B 109:15531

    Article  CAS  Google Scholar 

  97. Dion M, Rydberg H, Schroder E et al (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  98. Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotube. Phys Rev Lett 103:096102

    Article  Google Scholar 

  99. Zhu Q, Li L, Oganov AR et al (2013) Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys Rev B 87:195317

    Article  Google Scholar 

Download references

Acknowledgments

Calculations were performed at the supercomputer of the Center for Functional Nanomaterials, Brookhaven National Laboratory. We gratefully acknowledge funding from DARPA (Grants No. W31P4Q1210008 and No. W31P4Q1310005), NSF (No. EAR-1114313 and No. DMR-1231586), the AFOSR (No. FA9550-13-C-0037), CRDF Global (No. UKE2-7034-KV-11), and Government of the Russian Federation (No. 14.A12.31.0003). X.F.Z thanks National Science Foundation of China (Grant No. 11174152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem R. Oganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, Q., Oganov, A.R., Zhou, XF. (2014). Crystal Structure Prediction and Its Application in Earth and Materials Sciences. In: Atahan-Evrenk, S., Aspuru-Guzik, A. (eds) Prediction and Calculation of Crystal Structures. Topics in Current Chemistry, vol 345. Springer, Cham. https://doi.org/10.1007/128_2013_508

Download citation

Publish with us

Policies and ethics