Skip to main content

Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 322))

Abstract

Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate–protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell–cell interaction and communication. Protein–protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Con A:

Concanavalin A

Gb3:

Globotriaosylceramide

GM1:

Monosialotetrahexosylganglioside

HBM:

Hybrid bilayer membrane

MIP:

Molecularly imprinted polymer

NP:

Nanoparticle

QCM:

Quartz crystal microbalance

SAM:

Self assembled monolayer

SERS:

Surface Enhanced Raman Spectroscopy

SPR:

Surface plasmon resonance

References

  1. Lehn JM (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160

    CAS  Google Scholar 

  2. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Anal Lett 34:635–659

    CAS  Google Scholar 

  3. Rapp BE, Gruhl FJ, Lange K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398:2403–2412

    CAS  Google Scholar 

  4. Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, Vigh L, Matyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 100:8053–8058

    CAS  Google Scholar 

  5. Lehn JM (1990) Perspectives in supramolecular chemistry – from molecular recognition towards molecular information-processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Google Scholar 

  6. Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463

    CAS  Google Scholar 

  7. Menger FM (1991) Groups of organic-molecules that operate collectively. Angew Chem Int Ed Engl 30:1086–1099

    Google Scholar 

  8. Barboiu M (2010) Dynamic interactive systems: dynamic selection in hybrid organic-inorganic constitutional networks. Chem Commun (Camb) 46:7466–7476

    CAS  Google Scholar 

  9. Christian DA, Tian AW, Ellenbroek WG, Levental I, Rajagopal K, Janmey PA, Liu AJ, Baumgart T, Discher DE (2009) Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nat Mater 8:843–849

    CAS  Google Scholar 

  10. Walde P (2006) Surfactant assemblies and their various possible roles for the origin(s) of life. Orig Life Evol Biosph 36:109–150

    CAS  Google Scholar 

  11. Nguyen R, Allouche L, Buhler E, Giuseppone N (2009) Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew Chem Int Ed Engl 48:1093–1096

    CAS  Google Scholar 

  12. Giusepponne N, Lehn J-M (2006) Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. Chem Eur J 12:1715–1722

    Google Scholar 

  13. Mihai S, Cazacu A, Arnal-Herault C, Nasr G, Meffre A, van der Lee A, Barboiu M (2009) Supramolecular self-organization in constitutional hybrid materials. New J Chem 33:2335–2343

    CAS  Google Scholar 

  14. Ariga K, Ji QM, Hill JP, Kawazoe N, Chen GP (2009) Supramolecular approaches to biological therapy. Expert Opin Biol Ther 9:307–320

    CAS  Google Scholar 

  15. Luca C, Barboiu M, Supuran CT (1991) Stability constant of complex inhibitors and their mechanism of action. Rev Roum Chim 36(9–10):1169–1173

    CAS  Google Scholar 

  16. Barboiu M, Supuran CT, Menabuoni L, Scozzafava A, Mincione F, Briganti F, Mincione G (1999) Carbonic anhydrase inhibitors, synthesis of topically effective intraocular pressure lowering agents derived from 5-(aminoalkyl-carboxamido)-1,3,4-thiadiazole-2-sulfonamide. J Enz Inhib 15:23–46

    CAS  Google Scholar 

  17. Curie J, Curie P (1880) An oscillating quartz crystal mass detector. Comp Rend 91:294–297

    Google Scholar 

  18. Sauerbrey G (1959) Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik 155:206–222

    CAS  Google Scholar 

  19. Nomura T, Okuhara M (1982) Frequency-shifts of piezoelectric quartz crystals immersed in organic liquids. Anal Chim Acta 142:281–284

    CAS  Google Scholar 

  20. Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57:1770–1771

    CAS  Google Scholar 

  21. Voinova MV, Jonson M, Kasemo B (2002) 'Missing mass' effect in biosensor's QCM applications. Biosens Bioelectron 17:835–841

    CAS  Google Scholar 

  22. Beck R, Pittermann U, Weil KG (1992) Influence of the surface microstructure on the coupling between a quartz oscillator. J Electrochem Soc 139:453–461

    CAS  Google Scholar 

  23. Martin SJ, Frye GC, Ricco AJ, Senturia SD (1993) Effect of surface-roughness on the response of thickness-shear mode resonators. Anal Chem 65:2910–2922

    CAS  Google Scholar 

  24. Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184

    CAS  Google Scholar 

  25. Miura Y, Sasao Y, Dohi H, Nishida Y, Kobayashi K (2002) Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with shiga toxins. Anal Biochem 310:27–35

    CAS  Google Scholar 

  26. Zhang Y, Telyatnikov V, Sathe M, Zeng XQ, Wang PG (2003) Studying the interaction of alpha-Gal carbohydrate antigen and proteins by quartz-crystal microbalance. J Am Chem Soc 125:9292–9293

    CAS  Google Scholar 

  27. Zhang Y, Luo SZ, Tang YJ, Yu L, Hou KY, Cheng JP, Zeng XQ, Wang PG (2006) Carbohydrate-protein interactions by "clicked" carbohydrate self-assembled monolayers. Anal Chem 78:2001–2008

    CAS  Google Scholar 

  28. Shen Z (2007) Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem 79:2312–2319

    CAS  Google Scholar 

  29. Fawcett NC, Evans JA, Chien LC, Flowers N (1988) Nucleic-acid hybridization detected by piezoelectric resonance. Anal Lett 21:1099–1114

    CAS  Google Scholar 

  30. Zhou XC, Huang LQ, Li SFY (2001) Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosens Bioelectron 16:85–95

    CAS  Google Scholar 

  31. Mannelli F, Minunni A, Tombelli S, Wang RH, Spiriti MM, Mascini M (2005) Direct immobilisation of DNA probes for the development of affinity biosensors. Bioelectrochemistry 66:129–138

    CAS  Google Scholar 

  32. Hook F, Ray A, Norden B, Kasemo B (2001) Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 17:8305–8312

    Google Scholar 

  33. Matsuura K, Tsuchida A, Okahata Y, Akaike T, Kobayashi K (1998) A quartz-crystal microbalance study of adsorption behaviors of artificial glycoconjugate polymers onto chemically modified gold surfaces and their interactions with lectins. Bull Chem Soc Jpn 71:2973–2977

    CAS  Google Scholar 

  34. Pei YX, Yu H, Pei ZC, Theurer M, Ammer C, Andre S, Gabius HJ, Yan MD, Ramstrom O (2007) Photoderivatized polymer thin films at quartz crystal microbalance surfaces: sensors for carbohydrate-protein interactions. Anal Chem 79:6897–6902

    CAS  Google Scholar 

  35. Huang MC, Shen ZH, Zhang YL, Zeng XQ, Wang PG (2007) Alkanethiol containing glycopolymers: a tool for the detection of lectin binding. Bioorg Med Chem Lett 17:5379–5383

    CAS  Google Scholar 

  36. Cui RJ, Huang HP, Yin ZZ, Gao D, Zhu JJ (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673

    CAS  Google Scholar 

  37. Hildebrand A, Schaedlich A, Rothe U, Neubert RHH (2002) Sensing specific adhesion of liposomal and micellar systems with attached carbohydrate recognition structures at lectin surfaces. J Colloid Interface Sci 249:274–281

    CAS  Google Scholar 

  38. Avila M, Zougagh M, Escarpa A, Rios A (2008) Molecularly imprinted polymers for selective piezoelectric sensing of small molecules. Trac-Trends Anal Chem 27:54–65

    CAS  Google Scholar 

  39. Kim NH, Baek TJ, Park HG, Seong GH (2007) Highly sensitive biomolecule detection on a quartz crystal microbalance using gold nanoparticles as signal amplification probes. Anal Sci 23:177–181

    Google Scholar 

  40. Nie LB, Yang Y, Li S, He NY (2007) Enhanced DNA detection based on the amplification of gold nanoparticles using quartz crystal microbalance. Nanotechnology 18:305501–305505

    Google Scholar 

  41. Mahon E, Aastrup T, Barboiu M (2010) Multivalent recognition of lectins by glyconanoparticle systems. Chem Commun (Camb) 46:5491–5493

    CAS  Google Scholar 

  42. Paul S, Vadgama P, Ray AK (2009) Surface plasmon resonance imaging for biosensing. IET Nanobiotechnol 3:71–80

    CAS  Google Scholar 

  43. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative-determination of surface concentration of protein with surface-plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526

    CAS  Google Scholar 

  44. Su X, Wu Y-J, Knoll W (2005) Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron 21:719–726

    CAS  Google Scholar 

  45. Boujday S, Méthivier C, Beccard B, Pradier C-M (2009) Innovative surface characterization techniques applied to immunosensor elaboration and test: comparing the efficiency of Fourier transform-surface plasmon resonance, quartz crystal microbalance with dissipation measurements, and polarization modulation-reflection absorption infrared spectroscopy. Anal Biochem 387:194–201

    CAS  Google Scholar 

  46. Zhang GZ, Wu C (2009) Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol Rapid Commun 30:328–335

    Google Scholar 

  47. Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966

    CAS  Google Scholar 

  48. Mitchell J (2010) Small molecule immunosensing using surface plasmon resonance. Sensors 10:7323–7346

    CAS  Google Scholar 

  49. Manera MG, Spadavecchia J, Taurino A, Rella R (2010) Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process. J Opt 12:8

    Google Scholar 

  50. Wang JL, Munir A, Zhou HS (2009) Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta 79:72–76

    CAS  Google Scholar 

  51. Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177–5183

    CAS  Google Scholar 

  52. Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046

    CAS  Google Scholar 

  53. Sim HR, Wark AW, Lee HJ (2010) Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance. Analyst 135:2528–2532

    CAS  Google Scholar 

  54. Kim S, Lee J, Lee SJ, Lee HJ (2010) Ultra-sensitive detection of IgE using biofunctionalized nanoparticle-enhanced SPR. Talanta 81:1755–1759

    CAS  Google Scholar 

  55. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    CAS  Google Scholar 

  56. Knoll W, Koper I, Naumann R, Sinner EK (2008) Tethered bimolecular lipid membranes – a novel model membrane platform. Electrochim Acta 53:6680–6689

    CAS  Google Scholar 

  57. Briand E, Zach M, Svedhem S, Kasemo B, Petronis S (2010) Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. Analyst 135:343–350

    CAS  Google Scholar 

  58. Lindholm-Sethson B, Nystrom J, Malmsten M, Ringstad L, Nelson A, Geladi P (2010) Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation. Anal Bioanal Chem 398:2341–2349

    CAS  Google Scholar 

  59. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    CAS  Google Scholar 

  60. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    CAS  Google Scholar 

  61. Shipway AN, Lahav M, Gabai R, Willner I (2000) Investigations into the electrostatically induced aggregation of Au nanoparticles. Langmuir 16:8789–8795

    CAS  Google Scholar 

  62. Gerardy JM, Ausloos M (1983) Absorption-spectrum of clusters of spheres from the general-solution of Maxwells equations.4. Proximity, bulk, surface, and shadow effects (in binary clusters). Phys Rev B 27:6446–6463

    CAS  Google Scholar 

  63. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    CAS  Google Scholar 

  64. Schofield CL, Haines AH, Field RA, Russell DA (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22:6707–6711

    CAS  Google Scholar 

  65. Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J Am Chem Soc 123:8226–8230

    CAS  Google Scholar 

  66. Schofield CL, Field RA, Russell DA (2007) Glyconanoparticles for the colorimetric detection of cholera toxin. Anal Chem 79:1356–1361

    CAS  Google Scholar 

  67. Zheng M, Davidson F, Huang XY (2003) Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 125:7790–7791

    CAS  Google Scholar 

  68. Li HA, Cao ZJ, Zhang YH, Lau CW, Lu JZ (2010) Combination of quantum dot fluorescence with enzyme chemiluminescence for multiplexed detection of lung cancer biomarkers. Anal Meth 2:1236–1242

    CAS  Google Scholar 

  69. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    CAS  Google Scholar 

  70. Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134:1980–1990

    CAS  Google Scholar 

  71. Wang X, Ramstrom O, Yan M (2009) A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J Mater Chem 19:8944–8949

    CAS  Google Scholar 

  72. Lin C-C, Yeh Y-C, Yang C-Y, Chen C-L, Chen G-F, Chen C-C, Wu Y-C (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124:3508–3509

    CAS  Google Scholar 

  73. Liebau M, Hildebrand A, Neubert RHH (2001) Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance. Eur Biophys J Biophys Lett 30:42–52

    CAS  Google Scholar 

  74. Phillips KS, Wilkop T, Wu JJ, Al-Kaysi RO, Cheng Q (2006) Surface plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films. J Am Chem Soc 128:9590–9591

    CAS  Google Scholar 

  75. Shi J, Yang T, Cremer PS (2008) Multiplexing ligand-receptor binding measurements by chemically patterning microfluidic channels. Anal Chem 80:6078–6084

    CAS  Google Scholar 

  76. Conboy JC, McReynolds KD, Gervay-Hague J, Saavedra SS (2002) Quantitative measurements of recombinant HIV surface glycoprotein 120 binding to several glycosphingolipids expressed in planar supported lipid bilayers. J Am Chem Soc 124:968–977

    CAS  Google Scholar 

  77. Wang JL, Wang F, Chen HJ, Liu XH, Dong SJ (2008) Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid. Talanta 75:666–670

    CAS  Google Scholar 

  78. Munro JC, Frank CW (2004) Adsorption of lipid-functionalized poly(ethylene glycol) to gold surfaces as a cushion for polymer-supported lipid bilayers. Langmuir 20:3339–3349

    CAS  Google Scholar 

  79. Schuster B, Sleytr UB (2009) Composite S-layer lipid structures. J Struct Biol 168:207–216

    CAS  Google Scholar 

  80. Knoll W, Naumann R, Friedrich M, Robertson JWF, Losche M, Heinrich F, McGillivray DJ, Schuster B, Gufler PC, Pum D, Sleytr UB (2008) Solid supported lipid membranes: new concepts for the biomimetic functionalization of solid surfaces. Biointerphases 3:FA125–FA135

    CAS  Google Scholar 

  81. Handa H, Gurczynski S, Jackson MP, Mao GZ (2010) Immobilization and molecular :interactions between bacteriophage and lipopolysaccharide bilayers. Langmuir 26:12095–12103

    CAS  Google Scholar 

  82. Plant AL (1993) Self-assembled phospholipid alkanethiol biomimetic bilayers on gold. Langmuir 9:2764–2767

    CAS  Google Scholar 

  83. Plant AL, Brigham-Burke M, Petrella EC, Oshannessy DJ (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal Biochem 226:342–348

    CAS  Google Scholar 

  84. Hubbard JB, Silin V, Plant AL (1999) Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes. Biophys J 76:A431

    Google Scholar 

  85. Kilian KA, Bocking T, Gaus K, King-Lacroix J, Gal M, Gooding JJ (2007) Hybrid lipid bilayers in nanostructured silicon: a biomimetic mesoporous scaffold for optical detection of cholera toxin. Chem Commun (Camb) 1936–1938

    Google Scholar 

  86. Mun S, Choi SJ (2009) Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance. Biosens Bioelectron 24:2522–2527

    CAS  Google Scholar 

  87. Favero G, Campanella L, Cavallo S, D'Annibale A, Perrella M, Mattei E, Ferri T (2005) Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions. J Am Chem Soc 127:8103–8111

    CAS  Google Scholar 

  88. Mozsolits H, Wirth HJ, Werkmeister J, Aguilar MI (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochimica Et Biophysica Acta-Biomembranes 1512:64–76

    CAS  Google Scholar 

  89. Lee TH, Mozsolits H, Aguilar MI (2001) Measurement of the affinity of melittin for zwitterionic and anionic membranes using immobilized lipid biosensors. J Pept Res 58:464–476

    CAS  Google Scholar 

  90. Ye Q, Konradi R, Textor M, Reimhult E (2009) Liposomes tethered to omega-functional PEG brushes and induced formation of PEG brush supported planar lipid bilayers. Langmuir 25:13534–13539

    CAS  Google Scholar 

  91. Sinner E-K, Knoll W (2001) Functional tethered membranes. Curr Opin Chem Biol 5:705–711

    CAS  Google Scholar 

  92. Naumann R, Schiller SM, Giess F, Grohe B, Hartman KB, Kärcher I, Köper I, Lübben J, Vasilev K, Knoll W (2003) Tethered lipid bilayers on ultraflat gold surfaces. Langmuir 19:5435–5443

    CAS  Google Scholar 

  93. Shenoy S, Moldovan R, Fitzpatrick J, Vanderah DJ, Deserno M, Losche M (2010) In-plane homogeneity and lipid dynamics in tethered bilayer lipid membranes (tBLMs). Soft Matter 6:1263–1274

    CAS  Google Scholar 

  94. Wagner ML, Tamm LK (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414

    CAS  Google Scholar 

  95. Cazacu A, Legrand YM, Pasc A, Nasr G, Van der Lee A, Mahon E, Barboiu M (2009) Dynamic hybrid materials for constitutional self-instructed membranes. Proc Natl Acad Sci U S A 106:8117–8122

    CAS  Google Scholar 

  96. Vandenbussche S, Diaz D, Fernandez-Alonso MC, Pan WD, Vincent SP, Cuevas G, Canada FJ, Jimenez-Barbero J, Bartik K (2008) Aromatic-carbohydrate interactions: an NMR and computational study of model systems. Chem Eur J 14:7570–7578

    CAS  Google Scholar 

  97. Taylor JD, Phillips KS, Cheng Q (2007) Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates. Lab Chip 7:927–930

    CAS  Google Scholar 

  98. Cornell BA, BraachMaksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387:580–583

    CAS  Google Scholar 

  99. Williams TL, Jenkins ATA (2008) Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride. J Am Chem Soc 130:6438–6443

    CAS  Google Scholar 

  100. Mahon E, Aastrup T, Barboiu M (2010) Dynamic glycovesicle systems for amplified QCM detection of carbohydrate-lectin multivalent biorecognition. Chem Commun (Camb) 46:2441–2443

    CAS  Google Scholar 

  101. Voskuhl J, Stuart MCA, Ravoo BJ (2010) Sugar-decorated sugar vesicles: lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. Chem Eur J 16:2790–2796

    CAS  Google Scholar 

  102. Mornet S, Lambert O, Duguet E, Brisson A (2005) The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett 5:281–285

    CAS  Google Scholar 

  103. Savarala S, Ahmed S, Ilies MA, Wunder SL (2010) Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads. Langmuir 26:12081–12088

    CAS  Google Scholar 

  104. Arnal-Hérault C, Barboiu M, Pasc A, Michau M, Perriat P, van der Lee A (2007) Constitutional self-organization of adenine-uracil-derived hybrid materials. Chem Eur J 13:6792–6800

    Google Scholar 

  105. Liu JW, Stace-Naughton A, Jiang XM, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131:1354–1355

    Google Scholar 

  106. Barboiu M (2004) Supramolecular polymeric macrocyclic receptors – hybrid carrier vs. channel transporters in bulk liquid membranes. J Incl Phenom Macrocycl Chem 49:133–137

    CAS  Google Scholar 

  107. Lin SY, Chen CH, Lin MC, Hsu HF (2005) A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal Chem 77:4821–4828

    CAS  Google Scholar 

  108. Imabayashi S, Hobara D, Kakiuchi T (2001) Voltammetric detection of the surface diffusion of adsorbed thiolate molecules in artificially phase-separated binary self-assembled monolayers on a Au(111) surface. Langmuir 17:2560–2563

    CAS  Google Scholar 

  109. Ionita P, Volkov A, Jeschke G, Chechik V (2008) Lateral diffusion of thiol ligands on the surface of Au nanoparticles: an electron paramagnetic resonance study. Anal Chem 80:95–106

    CAS  Google Scholar 

  110. Boal AK, Rotello VM (2000) Intra- and intermonolayer hydrogen bonding in amide-functionalized alkanethiol self-assembled monolayers on gold nanoparticles. Langmuir 16:9527–9532

    CAS  Google Scholar 

  111. Boal AK, Rotello VM (2000) Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. J Am Chem Soc 122:734–735

    CAS  Google Scholar 

  112. Paulini R, Frankamp BL, Rotello VM (2002) Effects of branched ligands on the structure and stability of monolayers on gold nanoparticles. Langmuir 18:2368–2373

    CAS  Google Scholar 

  113. Duchesne L, Wells G, Fernig DG, Harris SA, Levy R (2008) Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles. ChemBioChem 9:2127–2134

    CAS  Google Scholar 

  114. Nørgaard K, Weygand MJ, Kjaer K, Brust M, Bjørnholm T (2004) Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles. Faraday Discuss 125:221–233

    Google Scholar 

  115. Gentilini C, Franchi P, Mileo E, Polizzi S, Lucarini M, Pasquato L (2009) Formation of patches on 3D SAMs driven by thiols with immiscible chains observed by ESR spectroscopy. Angew Chem Int Ed Engl 48:3060–3064

    CAS  Google Scholar 

  116. Gentilini C, Pasquato L (2010) Morphology of mixed-monolayers protecting metal nanoparticles. J Mater Chem 20:1403–1412

    CAS  Google Scholar 

  117. Barboiu M, Cazacu A, Michau M, Caraballo R, Arnal-Herault C, Pasc-Banu A (2008) Functional organic inorganic hybrid membranes. Chem Eng Proc 47:1044–1052

    CAS  Google Scholar 

  118. Ruff Y, Lehn JM (2008) Glycodynamers: dynamic analogs of arabinofuranoside oligosaccharides. Biopolymers 89:486–496

    CAS  Google Scholar 

  119. Sreenivasachary N, Hickman DT, Sarazin D, Lehn JM (2006) DyNAs: constitutional dynamic nucleic acid analogues. Chem -Eur J 12:8581–8588

    CAS  Google Scholar 

  120. Hickman DT, Sreenivasachary N, Lehn JM (2008) Synthesis of components for the generation of constitutional dynamic analogues of nucleic acids. Helv Chim Acta 91:1–20

    CAS  Google Scholar 

  121. Miyashita N, Kurth DG (2008) Directing supramolecular assemblies on surfaces. J Mater Chem 18:2636–2649

    CAS  Google Scholar 

  122. Nasr J, Barboiu M, Ono T, Fujii S, Lehn J-M (2008) Dynamic polymer membranes displaying tunable transport properties on constitutional exchange. J Membr Sci 321:8–14

    CAS  Google Scholar 

  123. Shi ZL, Lin N (2010) Structural and chemical control in assembly of multicomponent metal–organic coordination networks on a surface. J Am Chem Soc 132:10756–10761

    CAS  Google Scholar 

  124. Camacho C, Matias JC, Cao R, Matos M, Chico B, Hernandez J, Longo MA, Sanroman MA, Villalonga R (2008) Hydrogen peroxide biosensor with a supramolecular layer-by-layer design. Langmuir 24:7654–7657

    CAS  Google Scholar 

  125. Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yarnasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K (2005) Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polylon complex (PIC) micelles based on poly(ethylene glycol)-S,S-oligodeoxynucleotide conjugate. Biomacromolecules 6:2449–2454

    CAS  Google Scholar 

  126. Legrand YM, Dumitru F, van der Lee A, Barboiu M (2009) Constitutional chirality – adriving force for self-sorting homochiral single-crystals from achiral components. Chem Commun 2667–2669

    Google Scholar 

  127. Nierengarten JF, Iehl J, Oerthel V, Holler M, Illescas BM, Munoz A, Martin N, Rojo J, Sanchez-Navarro M, Cecioni S, Vidal S, Buffet K, Durka M, Vincent SP (2010) Fullerene sugar balls. Chem Commun 46:3860–3862

    CAS  Google Scholar 

  128. Durka M, Buffet K, Iehl J, Holler M, Nierengarten JF, Taganna J, Bouckaert J, Vincent SP (2011) The functional valency of dodecamannosylated fullerenes with Escherichia coli FimH –towards novel bacterial antiadesives. Chem Commun 47:1321–1323

    CAS  Google Scholar 

  129. Compain P, Decroocq CK, Iehl J, Holler M, Hazelard D, Barragan TM, Mellet CO, Nierengarten JF (2010) Glycosidase inhibition with fullerene iminosugar balls: a dramatic multivalent effect. Angew Chem Int Ed 49:5753–5756

    CAS  Google Scholar 

  130. Barboiu M, Cerneaux S, van der Lee A, Vaughan G (2004) Ion-driven ATP pump by self-organized hybrid membrane materials. J Am Chem Soc 126:3545–3550

    CAS  Google Scholar 

  131. Barboiu M, Vaughan G, van der Lee A (2003) Self-organized heteroditopic macrocyclic superstructures. Org Lett 5:3073–3076

    CAS  Google Scholar 

  132. Cazacu A, Tong C, van der Lee A, Fyles TM, Barboiu M (2006) Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. J Am Chem Soc 128:9541–9548

    CAS  Google Scholar 

  133. Michau M, Barboiu M, Caraballo R, Arnal-Herault C, Perriat P, Van Der Lee A, Pasc A (2008) Ion-conduction pathways in self-organised ureidoarene-heteropolysiloxane hybrid membranes. Chem -Eur J 14:1776–1783

    CAS  Google Scholar 

  134. Michau M, Caraballo R, Arnal-Herault C, Barboiu M (2008) Alkali cation-pi aromatic conduction pathways in self-organized hybrid membranes. J Membr Sci 321:22–30

    CAS  Google Scholar 

  135. Arnal-Herault C, Banu A, Barboiu M, Michau M, van der Lee A (2007) Amplification and transcription of the dynamic supramolecular chirality of the guanine quadruplex. Angew Chem Int Ed Engl 46:4268–4272

    CAS  Google Scholar 

  136. Arnal-Herault C, Pasc A, Michau M, Cot D, Petit E, Barboiu M (2007) Functional G-quartet macroscopic membrane films. Angew Chem Int Ed Engl 46:8409–8413

    CAS  Google Scholar 

  137. Davis JT, Spada GP (2007) Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev 36:296–313

    CAS  Google Scholar 

  138. Davis JT (2004) G-quartets 40 years later: from 5 '-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl 43:668–698

    CAS  Google Scholar 

  139. Ramstrom O, Lehn JM (2002) Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov 1:26–36

    CAS  Google Scholar 

  140. Barboiu M, Lehn JM (2002) Dynamic chemical devices: modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching. Proc Natl Acad Sci U S A 99:5201–5206

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financed as part of the Marie Curie Research Training Network- “DYNAMIC” (MRTN-CT-2005-019561) and of a EURYI scheme award. See www.esf.org/euryi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Barboiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahon, E., Aastrup, T., Barboiu, M. (2011). Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems. In: Barboiu, M. (eds) Constitutional Dynamic Chemistry. Topics in Current Chemistry, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_199

Download citation

Publish with us

Policies and ethics