Skip to main content

Minimal Proper Interval Completions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4271))

Abstract

Given an arbitrary graph G=(V,E) and a proper interval graph H=(V,F) with E ⊆ F we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H′=(V,F′) with E ⊆ F′ ⊂ F, H′ is not a proper interval graph. In this paper we give a \({{\mathcal{O}}(n+m)}\) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.

Partially supported by Programs Conicyt “Anillo en Redes” (I.R.) and Ecos-Conicyt (I.R., I.T).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, A., Bordat, J.P.: Separability Generalizes Dirac’s Theorem. Discrete Applied Mathematics 84(1-3), 43–53 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)

    MATH  Google Scholar 

  5. Habib, M., Paul, C., Viennot, L.: Partition Refinement Techniques: An Interesting Algorithmic Tool Kit. International Journal of Foundations of Computer Science 10(2), 147–170 (1999)

    Article  MathSciNet  Google Scholar 

  6. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234(1-2), 59–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Heggernes, P., Mancini, F.: Minimal Split Completions of Graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n α log n) = o(n 2.376). In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms - SODA 2005, pp. 907–916. SIAM, Philadelphia (2005)

    Google Scholar 

  10. Kaplan, H., Shamir, R.: Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques. SIAM Journal on Computing 25(3), 540–561 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs. SIAM Journal on Computing 28(5), 1906–1922 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kratsch, D., Spinrad, J.: Minimal fill in cO(n 2.69) time. Discrete Applied Mathematics (to appear)

    Google Scholar 

  13. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 in NP-complete. SIAM Journal on Algebraic and Discrete Methods 7, 505–512 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval graphs. Information Processing Letters 87(3), 153–161 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rappaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Technical Report RR-2006-02, LIFO - University of Orléans (2006), http://www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2006.htm.en

  16. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rapaport, I., Suchan, K., Todinca, I. (2006). Minimal Proper Interval Completions. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_20

Download citation

  • DOI: https://doi.org/10.1007/11917496_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48381-6

  • Online ISBN: 978-3-540-48382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics