Skip to main content

Property-Driven Statistics of Biological Networks

  • Conference paper
Transactions on Computational Systems Biology VI

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4220))

  • 515 Accesses

Abstract

An analysis of heterogeneous biological networks based on randomizations that preserve the structure of component subgraphs is introduced and applied to the yeast protein-protein interaction and transcriptional regulation network. Shuffling this network, under the constraint that the transcriptional and protein-protein interaction subnetworks are preserved reveals statistically significant properties with potential biological relevance. Within the population of networks which embed the same two original component networks, the real one exhibits simultaneously higher bi-connectivity (the number of pairs of nodes which are connected using both subnetworks), and higher distances. Moreover, using restricted forms of shuffling that preserve the interface between component networks, we show that these two properties are independent: restricted shuffles tend to be more compact, yet do not lose any bi-connectivity.

Finally, we propose an interpretation of the above properties in terms of the signalling capabilities of the underlying network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: 32nd Annual ACM Symposium on Theory of Computing, pp. 171–180 (2000)

    Google Scholar 

  2. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  3. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, C.L., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga., G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  4. Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31(1), 60–63 (2002)

    Article  Google Scholar 

  5. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W., Figeys, D., Tyers, M.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

    Article  Google Scholar 

  6. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31(4), 370–377 (2002)

    Google Scholar 

  7. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U.S.A. 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  8. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein inter actome. PNAS 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  9. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  10. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  11. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics (2004)

    Google Scholar 

  12. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Article  Google Scholar 

  13. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. PNAS 101(14), 11250–11255 (2004)

    Article  Google Scholar 

  14. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  Google Scholar 

  15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  16. Milo, R., Shen-Orr, S.S., Itzkowitz, S., Kashtan, N., Chklovskii, D., Alon, U.: On the uniform generation of random graphs with prescribed degree sequence. ArXiv (2003)

    Google Scholar 

  17. Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  18. Newman, M.E.: Properties of highly clustered networks. Phys. Rev. E. Stat. Nonlin Soft Matter Phys. 68(2 Pt 2), 26121 (2003)

    Article  Google Scholar 

  19. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E. Stat. Nonlin Soft Matter Phys. 69(2 Pt 2), 026113 (2004)

    Article  Google Scholar 

  20. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E. Stat. Nonlin Soft Matter Phys. 64(2 Pt 2), 026118 (2001)

    Article  Google Scholar 

  21. Price, N.D., Papin, J.A., Schilling, C.H., Palsson, B.O.: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21(4), 162–169 (2003)

    Article  Google Scholar 

  22. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  23. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat. Genet. 31(1), 64–68 (2002)

    Article  Google Scholar 

  24. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  25. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000)

    Article  Google Scholar 

  26. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  27. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18(7), 1283–1292 (2001)

    Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  29. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U. S. A. 101(16), 5934–5939 (2004)

    Article  Google Scholar 

  30. Yook, S.H., Jeong, H., Barabasi, A.L., Tu, Y.: Weighted evolving networks. Phys. Rev. Lett. 86(25), 5835–5838 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourguignon, PY., Danos, V., Képes, F., Smidtas, S., Schächter, V. (2006). Property-Driven Statistics of Biological Networks. In: Priami, C., Plotkin, G. (eds) Transactions on Computational Systems Biology VI. Lecture Notes in Computer Science(), vol 4220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11880646_1

Download citation

  • DOI: https://doi.org/10.1007/11880646_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45779-4

  • Online ISBN: 978-3-540-46236-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics