Skip to main content

Fault-Tolerant and Self-stabilizing Mobile Robots Gathering

– Feasibility Study –

  • Conference paper
Distributed Computing (DISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4167))

Included in the following conference series:

Abstract

Gathering is a fundamental coordination problem in cooperative mobile robotics. In short, given a set of robots with arbitrary initial location and no initial agreement on a global coordinate system, gathering requires that all robots, following their algorithm, reach the exact same but not predetermined location. Gathering is particularly challenging in networks where robots are oblivious (i.e., stateless) and the direct communication is replaced by observations on their respective locations. Interestingly any algorithm that solves gathering with oblivious robots is inherently self-stabilizing.

In this paper, we significantly extend the studies of deterministic gathering feasibility under different assumptions related to synchrony and faults (crash and Byzantine). Unlike prior work, we consider a larger set of scheduling strategies, such as bounded schedulers, and derive interesting lower bounds on these schedulers. In addition, we extend our study to the feasibility of probabilistic gathering in both fault-free and fault-prone environments. To the best of our knowledge our work is the first to address the gathering from a probabilistic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots. In: Proc. 4th European Research Seminar on Advances in Distributed Systems (ERSADS 2001), Bertinoro, Italy, pp. 185–190 (2001)

    Google Scholar 

  3. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. Theoretical Computer Science 337, 147–168 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Souissi, S., Défago, X., Yamashita, M.: Eventually consistent compasses for robust gathering of asynchronous mobile robots with limited visibility. Research Report IS-RR-2005-010, JAIST, Ishikawa, Japan (2005)

    Google Scholar 

  6. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  7. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), New Orleans, LA, USA, pp. 1070–1078 (2004)

    Google Scholar 

  9. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Distributed Computing 18(3), 221–232 (2006)

    Article  Google Scholar 

  10. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering: Feasibility study. Tech. Rep. PI-1802, IRISA, Rennes, France (2006)

    Google Scholar 

  11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  12. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information and Computation 185(1), 105–157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile robots. Theory of Computing Systems 38(5), 539–558 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P. (2006). Fault-Tolerant and Self-stabilizing Mobile Robots Gathering. In: Dolev, S. (eds) Distributed Computing. DISC 2006. Lecture Notes in Computer Science, vol 4167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864219_4

Download citation

  • DOI: https://doi.org/10.1007/11864219_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44624-8

  • Online ISBN: 978-3-540-44627-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics