Skip to main content

Independent Zero-Knowledge Sets

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4052))

Abstract

We define and construct Independent Zero-Knowledge Sets (ZKS) protocols. In a ZKS protocols, a Prover commits to a set S, and for any x, proves non-interactively to a Verifier if xS or xS without revealing any other information about S. In the independent ZKS protocols we introduce, the adversary is prevented from successfully correlate her set to the one of a honest prover. Our notion of independence in particular implies that the resulting ZKS protocol is non-malleable.

On the way to this result we define the notion of independence for commitment schemes. It is shown that this notion implies non-malleability, and we argue that this new notion has the potential to simplify the design and security proof of non-malleable commitment schemes.

Efficient implementations of ZKS protocols are based on the notion of mercurial commitments. Our efficient constructions of independent ZKS protocols requires the design of new commitment schemes that are simultaneously independent (and thus non-malleable) and mercurial.

Extended Abstract. An extended version, which contains all formal definitions and proofs, is available at the IACR Eprint Archive: http://eprint.iacr.org/ 2006/155

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyar, J., Kurtz, S.A., Krentel, M.W.: A Discrete Logarithm Implementation of Perfect Zero-Knowledge Blobs. J. Cryptology 2(2), 63–76 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pfitzmann, B., Barić, N.: Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

    Google Scholar 

  3. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Catalano, D., Dodis, Y., Visconti, I.: Mercurial Commitments: Minimal Assumptions and Efficient Constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cramer, R.J.F., Damgård, I.B.: New Generation of Secure and Practical RSA-Based Signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996)

    Google Scholar 

  7. Damgård, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: STOC 2003, pp. 426–437 (2003)

    Google Scholar 

  8. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-Interactive and Non-Malleable Commitment. In: STOC, pp. 141–150 (1998)

    Google Scholar 

  9. Di Crescenzo, G., Ostrovsky, R., Katz, J., Smith, A.: Efficient and Non-interactive Non-malleable Commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. SIAM J. Comp. 30(2), 391–437 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic Functions. In: FOCS (1999)

    Google Scholar 

  12. Gennaro, R.: Multi-trapdoor Commitments and Their Applications to Proofs of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)

    Google Scholar 

  13. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Malkin, T.G., Reyzin, L., Lysyanskaya, A., Chase, M., Healy, A.: Mercurial Commitments with Applications to Zero-Knowledge Sets. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. MacKenzie, P.D., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)

    Google Scholar 

  17. Micali, S., Rabin, M.O., Kilian, J.: Zero-Knowledge Sets. In: FOCS 2003, pp. 80–91 (2003)

    Google Scholar 

  18. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  19. Rackoff, C., Ostrovsky, R., Smith, A.: Efficient Consistency Proofs for Generalized Queries on a Committed Database. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Rivest, R., Shamir, A., Adelman, L.: A Method for Obtaining Digital Signature and Public Key Cryptosystems. Comm. of ACM 21, 120–126 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gennaro, R., Micali, S. (2006). Independent Zero-Knowledge Sets. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_4

Download citation

  • DOI: https://doi.org/10.1007/11787006_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35907-4

  • Online ISBN: 978-3-540-35908-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics