Skip to main content

Every Sequence Is Decompressible from a Random One

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3988))

Abstract

Kučera and Gács independently showed that every infinite sequence is Turing reducible to a Martin-Löf random sequence. We extend this result to show that every infinite sequence S is Turing reducible to a Martin-Löf random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S. We show that this is the optimal ratio of query bits to computed bits achievable with Turing reductions. As an application of this result, we give a new characterization of constructive dimension in terms of Turing reduction compression ratios.

This research was funded in part by grant number 9972653 from the National Science Foundation as part of their Integrative Graduate Education and Research Traineeship (IGERT) program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing (2004); Preliminary version appeared in: Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science, pp. 632–643 (to appear)

    Google Scholar 

  2. Barzdin′, Y.M.: Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Soviet Mathematics Doklady 9, 1251–1254 (1968)

    MATH  Google Scholar 

  3. Chaitin, G.J.: A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Edgar, G.A.: Classics on Fractals. Westview Press, Oxford (2004)

    MATH  Google Scholar 

  5. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley, Chichester (1990)

    MATH  Google Scholar 

  6. Fenner, S.A.: Gales and supergales are equivalent for defining constructive Hausdorff dimension. Technical Report cs.CC/0208044, Computing Research Repository (2002)

    Google Scholar 

  7. Gács, P.: Every sequence is reducible to a random one. Information and Control 70, 186–192 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179 (1919); English version appears in: [Edg04], pp. 75–99

    Article  MATH  Google Scholar 

  9. Hitchcock, J.M.: Gales suffice for constructive dimension. Information Processing Letters 86(1), 9–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huffman, D.A.: Canonical forms for information-lossless finite-state logical machines. IRE Trans. Circuit Theory CT-6 (Special Supplement) , pp. 41–59 (1959), Also available in: Moore, E.F., (ed.) Sequential Machine: Selected Papers, pp. 866–871. Addison-Wesley (1964)

    Google Scholar 

  11. Kučera, A.: Measure, \({\rm \Pi}_1^0\)-classes and complete extensions of PA. In: Recursion Theory Week. Lecture Notes in Mathematics, vol. 1141, pp. 245–259 (1985)

    Google Scholar 

  12. Kučera, A.: On the use of diagonally nonrecursive functions. In: Studies in Logic and the Foundations of Mathematics, vol. 129, pp. 219–239. North-Holland, Amsterdam (1989)

    Google Scholar 

  13. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003); Preliminary version appeared in: Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity, pp. 158–169 (2000)

    Google Scholar 

  14. Lutz, J.H.: The dimensions of individual strings and sequences. Information and Computation 187, 49–79 (2003); Preliminary version appeared in: Proceedings of the 27th International Colloquium on Automata, Languages, and Programming, pp. 902–913 (2000)

    Google Scholar 

  15. Lutz, J.H.: Effective fractal dimensions. Mathematical Logic Quarterly 51, 62–72 (2003) (Invited lecture at the International Conference on Computability and Complexity in Analysis, Cincinnati, OH) (August 2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  17. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters 84(1), 1–3 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Merkle, W., Mihailović, N.: On the construction of effective random sets. Journal of Symbolic Logic, 862–878 (2004)

    Google Scholar 

  20. Miller, J.S., Nies, A.: Randomness and computability: Open questions. Technical report, University of Auckland (2005)

    Google Scholar 

  21. Ya Ryabko, B.: Noiseless coding of combinatorial sources. Problems of Information Transmission 22, 170–179 (1986)

    MATH  Google Scholar 

  22. Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  24. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of the Cambridge Philosophical Society 91, 57–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transaction on Information Theory 24, 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doty, D. (2006). Every Sequence Is Decompressible from a Random One. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_17

Download citation

  • DOI: https://doi.org/10.1007/11780342_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35466-6

  • Online ISBN: 978-3-540-35468-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics