Skip to main content

Learning Rational Stochastic Languages

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

Given a finite set of words w 1, ..., w n independently drawn according to a fixed unknown distribution law P called a stochastic language, a usual goal in Grammatical Inference is to infer an estimate of P in some class of probabilistic models, such as Probabilistic Automata (PA). Here, we study the class \({{\mathcal S}_{\mathbb R}^{rat}(\Sigma)}\) of rational stochastic languages, which consists in stochastic languages that can be generated by Multiplicity Automata (MA) and which strictly includes the class of stochastic languages generated by PA. Rational stochastic languages have minimal normal representation which may be very concise, and whose parameters can be efficiently estimated from stochastic samples. We design an efficient inference algorithm DEES which aims at building a minimal normal representation of the target. Despite the fact that no recursively enumerable class of MA computes exactly \({{\mathcal S}_{\mathbb Q}^{rat}(\Sigma)}\), we show that DEES strongly identifies \({{\mathcal S}_{\mathbb Q}^{rat}(\Sigma)}\) in the limit. We study the intermediary MA output by DEES and show that they compute rational series which converge absolutely and which can be used to provide stochastic languages which closely estimate the target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: On the applications of multiplicity automata in learning. In: IEEE Symposium on Foundations of Computer Science, pp. 349–358 (1996)

    Google Scholar 

  2. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. Journal of the ACM 47(3), 506–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and equivalence queries. In: Italian Conf. on Algorithms and Complexity (1994)

    Google Scholar 

  4. Berstel, J., Reutenauer, C.: Les séries rationnelles et leurs langages. Masson (1984)

    Google Scholar 

  5. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994)

    Google Scholar 

  6. Denis, F., Esposito, Y.: Learning classes of probabilistic automata. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 124–139. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Denis, F., Esposito, Y.: Rational stochastic languages. Technical report, LIF - Université de Provence (2006), http://hal.ccsd.cnrs.fr/ccsd-00019728

  8. Gold, E.M.: Language identification in the limit. Inform. Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  9. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  10. Lugosi, G.: Pattern classification and learning theory. In: Principles of Nonparametric Learning, pp. 1–56. Springer, Heidelberg (2002)

    Google Scholar 

  11. Sakarovitch, J.: Éléments de théorie des automates. Éditions Vuibert (2003)

    Google Scholar 

  12. Salomaa, A., Soittola, M.: Automata: Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  13. Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using Kullback-Leibler divergence and minimality. In: Proc. 17th ICML, pp. 975–982. KAUFM

    Google Scholar 

  14. Vapnik, V.N.: Statistical Learning Theory. John Wiley, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denis, F., Esposito, Y., Habrard, A. (2006). Learning Rational Stochastic Languages. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_22

Download citation

  • DOI: https://doi.org/10.1007/11776420_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics