Skip to main content

Updating Directed Minimum Cost Spanning Trees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4007))

Abstract

We consider the problem of updating a directed minimum cost spanning tree (DMST), when edges are deleted from or inserted to a weighted directed graph. This problem apart from being a classic for directed graphs, is to the best of our knowledge a wide open aspect for the field of dynamic graph algorithms. Our contributions include results on the hardness of updates, a dynamic algorithm for updating a DMST, and detailed experimental analysis of the proposed algorithm exhibiting a speedup factor of at least 2 in comparison with the static practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edmonds, J.: Optimum branchings. Journal of Research of the National Bureau for Standards 69B, 125–130 (1967)

    MathSciNet  Google Scholar 

  2. Kang, I., Poovendran, R.: Maximizing network lifetime of broadcasting over wireless stationary adhoc networks. Mobile Networks 11 (to appear, 2006)

    Google Scholar 

  3. Li, N., Hou, J.: Topology Control in Heterogeneous Wireless Networks: Problems and Solutions. In: Proceedings of the 23rd IEEE INFOCOM (2004)

    Google Scholar 

  4. Li, Z., Hauck, S.: Configuration compression for virtex fpgas. In: Proceedings of the 9th IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2001, pp. 147–159 (2001)

    Google Scholar 

  5. He, L., Mitra, T., Wong, W.: Configuration bitstream compression for dynamically reconfigurable FPGAs. In: Proceedings of the 2004 International Conference on Computer-Aided Design, ICCAD 2004, pp. 766–773 (2004)

    Google Scholar 

  6. Bock, F.: An algorithm to construct a minimum spanning tree in a directed network. In: Developments in Operations Research. Gordon and Breach, pp. 29–44 (1971)

    Google Scholar 

  7. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Scientia Sinica 14, 1396–1400 (1965)

    MathSciNet  MATH  Google Scholar 

  8. Tarjan, R.E.: Finding optimum branchings. Networks 7, 25–35 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding Priority Queues. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 223–235. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Eppstein, D., Galil, Z., Italiano, G.F.: 8: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook, CRC Press, Boca Raton (1999)

    Google Scholar 

  12. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48, 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., Zadeck, F.K.: Incremental evaluation of computational circuits. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 32–42 (1990)

    Google Scholar 

  14. Ramalingam, G., Reps, T.: On the complexity of dynamic graph problems. Theoretical Computer Science 158(1&2), 233–277 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for maintaining shortest paths trees. Journal of Algorithms 34, 251–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pearce, D.J., Kelly, P.H.J.: A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 383–398. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Spira, P.M., Pan, A.: On Finding and Updating Spanning Trees and Shortest Paths. SIAM Journal on Computing 4(3), 364–380 (1975)

    Article  MathSciNet  Google Scholar 

  18. Rabin, M.O.: Proving simultaneous positivity of linear forms. Journal of Computers and Systems Sciences 6, 639–650 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pollatos, G.G., Telelis, O.A., Zissimopoulos, V. (2006). Updating Directed Minimum Cost Spanning Trees. In: Àlvarez, C., Serna, M. (eds) Experimental Algorithms. WEA 2006. Lecture Notes in Computer Science, vol 4007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11764298_27

Download citation

  • DOI: https://doi.org/10.1007/11764298_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34597-8

  • Online ISBN: 978-3-540-34598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics