Skip to main content

Label-Free Quantitative In Vitro Live Cell Imaging with Digital Holographic Microscopy

  • Chapter
  • First Online:
Label-Free Monitoring of Cells in vitro

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 2))

Abstract

Label-free quantitative in vitro imaging of living cell cultures with light microscopy is an important tool for various research fields in the life sciences. Digital holographic microscopy (DHM) provides contactless, minimally invasive quantitative phase contrast imaging and can be integrated as a module in common research microscopes. Due to the numerical reconstruction of quantitative phase images, multi-focus imaging is achieved from a single digital hologram. The evaluation of the recorded quantitative phase contrast images allows the extraction of data for simplified object tracking and image segmentation. The special DHM feature of numerical autofocusing avoids mechanical focus realignment. As quantitative DHM phase imaging is based on the detection of optical path length changes in transmission, the method only requires low light intensities for object illumination which minimizes the interaction with the sample. Thus, minimally invasive long-term time-lapse investigations for quantitative monitoring of dynamic changes of cell morphology, motility, and proliferation are accessible. In addition, the integral cellular refractive index, which is related to intracellular solute concentrations as well as cellular volume and dry mass, is available. The chapter starts with an introduction to DHM for live cell observation and procedures for the extraction of biophysical parameters from quantitative DHM phase contrast images. After the physical basis has been laid out, several selected applications of in vitro live cell analysis are described. This includes the characterization of suspended cells and spherical intracellular organelles as well as the quantification of the cellular response to osmotic stimulation, drugs, toxins, nanomaterials, and genetic modifications. Subsequent paragraphs illustrate how DHM can be applied to quantify cell motility, migration, and the morphology of adherent cell cultures. Finally, phenotyping based on cell thickness determination, dynamic multimodal imaging of cellular growth, proliferation, and wound healing in vitro as well as applications in toxicity testing of pathogens and the characterization of cell nanomaterial interactions are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ntziachristos V (2006) Fluorescence molecular imaging. Ann Biomed Eng 8:1–33

    CAS  Google Scholar 

  2. Goldys EM (2009) Fluorescence applications in biotechnology and life sciences. Wiley-Blackwell, Hoboken

    Google Scholar 

  3. Schermelleh L, Heintzmann RB, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Spence MT, Johnson ID (2010) The molecular probes handbook: a guide to fluorescent probes and labeling technologies. Live Technologies Corporation, Carlsbad

    Google Scholar 

  5. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    CAS  PubMed  Google Scholar 

  6. Chang C, Sud D, Mycek M (2007) Fluorescence lifetime imaging microscopy. Methods Cell Biol 81:495

    CAS  PubMed  Google Scholar 

  7. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8(1):1

    Google Scholar 

  8. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217(1):3–15

    CAS  Google Scholar 

  9. Felgner PL, Gadenk TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsampoula X, Taguchi K, Cizmar T, Garces-Chavez V, Ma N, Mohanty S, Mohanty K, Gunn-Moore F, Dholakia A (2008) Fibre based cellular transfection. Opt Express 16(21):17007–17013

    CAS  PubMed  Google Scholar 

  11. Drexler W (2004) Ultrahigh-resolution optical coherence tomography. J Biomed Opt 9(1):47–74

    PubMed  Google Scholar 

  12. Fercher AF (2010) Optical coherence tomography–development, principles, applications. Z Med Phys 20(4):251–276

    PubMed  Google Scholar 

  13. Seddon AB (2013) Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Stat Solid (b) 250(5):1020–1027

    CAS  Google Scholar 

  14. Hughes C, Baker MJ (2016) Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst 141(2):467–475

    CAS  PubMed  Google Scholar 

  15. Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-stokes Raman scattering microscopy: a biological review. Cytometry A 69(8):779–791

    PubMed  Google Scholar 

  16. Cuche E, Marquet P, Depeursinge C (1999) Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Optics 38(34):6994–7001

    CAS  Google Scholar 

  17. Carl D, Kemper B, Wernicke G, von Bally G (2004) Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl Optics 43(36):6536–6544

    Google Scholar 

  18. Popescu G, Deflores LP, Vaughan JC, Badizadegan K, Iwai H, Dasari RR, Feld MS (2004) Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett 29(21):2503–2505

    PubMed  Google Scholar 

  19. Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30(5):468–470

    PubMed  Google Scholar 

  20. Mann CJ, Yu L, Lo CM, Kim MK (2005) High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 13(22):8693–8698

    PubMed  Google Scholar 

  21. Ikeda T, Popescu G, Dasari RR, Feld MS (2005) Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt Lett 30(10):1165–1167

    PubMed  Google Scholar 

  22. Kemper B, Carl D, Schnekenburger J, Bredebusch I, Schäfer M, Domschke W, von Bally G (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J Biomed Opt 11(3):34005

    PubMed  Google Scholar 

  23. Popescu G, Ikeda T, Dasari RR, Feld MS (2006) Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett 31(6):775–777

    PubMed  Google Scholar 

  24. Choi W, Fang-Yen C, Badizadegan K, Oh S, Lue N, Dasari RR, Feld MS (2007) Tomographic phase microscopy. Nat Methods 4:717–719

    CAS  PubMed  Google Scholar 

  25. Kemper B, von Bally G (2008) Digital holographic microscopy for live cell applications and technical inspection. Appl Optics 47(4):A52–A61

    Google Scholar 

  26. Debailleul M, Georges V, Simon B, Morin R, Haeberlé O (2009) High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. Opt Lett 34(1):79–81

    CAS  PubMed  Google Scholar 

  27. Kozacki T, Krajewski R, Kujawińska M (2009) Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system. Opt Express 17(16):13758–13767

    CAS  PubMed  Google Scholar 

  28. Shaked NT, Rinehart MT, Wax A (2009) Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt Lett 34(6):767–769

    PubMed  PubMed Central  Google Scholar 

  29. Bon P, Maucort G, Wattellier B, Monneret S (2009) Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt Express 17(15):13080–13094

    CAS  PubMed  Google Scholar 

  30. Jang J, Bae CY, Park JK, Ye JC (2010) Self-reference quantitative phase microscopy for microfluidic devices. Opt Lett 35(4):514–516

    PubMed  Google Scholar 

  31. Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, Gilette MU, Popescu G (2011) Spatial light interference microscopy (SLIM). Opt Express 19(2):1016–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Frank J, Matrisch J, Horstmann J, Altmeyer S, Wernicke G (2011) Refractive index determination of transparent samples by noniterative phase retrieval. Appl Optics 50(4):427–433

    Google Scholar 

  33. Wang Z, Tangella K, Balla A, Popescu G (2011) Tissue refractive index as marker of disease. J Biomed Opt 16(11):116017

    PubMed  PubMed Central  Google Scholar 

  34. Phillips KG, Velasco CR, Kolatkar A, Luttgen M, Bethel K, Duggan B, Kuhn P, McCarthy OJ (2012) Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front Oncol 2:72

    PubMed  PubMed Central  Google Scholar 

  35. Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S, von Bally G, Domagk D, Kemper B (2013) Quantification of inflammation in colonic tissue sections and wound healing in vitro with digital holographic microscopy. SPIE Proc 8797:879702

    Google Scholar 

  36. Marquet P, Depeursinge C, Magistretti PJ (2014) Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1(2):020901

    PubMed  PubMed Central  Google Scholar 

  37. Jenkins MH, Gaylord TK (2015) Quantitative phase microscopy via optimized inversion of the phase optical transfer function. Appl Optics 54(28):8566–8579

    Google Scholar 

  38. Barankov R, Baritaux JC, Mertz J (2015) High-resolution 3D phase imaging using a partitioned detection aperture: a wave-optic analysis. J Opt Soc Am A 32(11):2123–2135

    Google Scholar 

  39. Kreis T (1996) In: Osten W (ed) Holographic interferometry: principles and methods, vol 1. Akademie-Verlag, Berlin

    Google Scholar 

  40. Beek M, Hentschel W (2000) Laser metrology – a diagnostic tool in automotive industry. Opt Lasers Eng 34:101–120

    Google Scholar 

  41. Ostrovsky YI, Shchepinov VP, Yakovlev VV (2013) Holographic interferometry in experimental mechanics. Wiley, New York

    Google Scholar 

  42. Cuche E, Bevilacqua F, Depeursinge C (1999) Digital holography for quantitative phase-contrast imaging. Opt Lett 24(5):291–293

    CAS  PubMed  Google Scholar 

  43. Zernike F (1955) How I discovered phase contrast. Science 121(3141):345–349

    CAS  PubMed  Google Scholar 

  44. Nomarski G (1955) Differential microinterferometer with polarized waves. J Phys Radium 16(9):9S–11S

    Google Scholar 

  45. Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778

    CAS  PubMed  Google Scholar 

  46. Leith EN, Upatnieks J (1962) Reconstructed wavefronts and communication theory. J Opt Soc Am 52(10):1123–1130

    Google Scholar 

  47. Leith EN, Upatnieks J (1963) Wavefront reconstruction with continuous-tone objects. J Opt Soc Am 53(12):1377–1381

    Google Scholar 

  48. Schnars U, Jüptner WP (2002) Digital recording and numerical reconstruction of holograms. Meas Sci Technol 13(9):R85

    CAS  Google Scholar 

  49. Lee K, Kim K, Jung J, Heo JH, Cho S, Lee S, Chang G, Jo YJ, Park H, Park YK (2013) Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13(4):4170–4191

    PubMed  Google Scholar 

  50. Kim MK (2010) Principles and techniques of digital holographic microscopy. SPIE Rev 1:018005

    Google Scholar 

  51. Popescu G (2011) Quantitative phase imaging of cells and tissues. McGraw Hill Professional, New York

    Google Scholar 

  52. Kemper B, Carl D, Höink A, von Bally G, Bredebusch I, Schnekenburger J (2006) Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells. SPIE Proc 6191:61910T

    Google Scholar 

  53. Rommel CE, Dierker C, Schmidt L, Przibilla S, von Bally G, Kemper B, Schnekenburger J (2010) Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index. J Biomed Opt 15(4):041509

    PubMed  Google Scholar 

  54. Kemper B, Langehanenberg P, Höink A, von Bally G, Wottowah F, Schinkinger G, Guck J, Käs J, Bredebusch I, Schnekenburger J, Schütze K (2010) Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy. J Biophotonics 3(7):425–431

    PubMed  Google Scholar 

  55. Esseling M, Kemper B, Antkowiak M, Stevenson DJ, Chaudet L, Neil MA, French PW, von Bally G, Dholakia K, Deny C (2012) Multimodal biophotonic workstation for live cell analysis. J Biophotonics 5(1):9–13

    CAS  PubMed  Google Scholar 

  56. Barroso Á, Woerdemann M, Vollmer A, von Bally G, Kemper B, Denz C (2013) Three-dimensional exploration and mechano-biophysical analysis of the inner structure of living cells. Small 9:885–893

    CAS  PubMed  Google Scholar 

  57. Odenthal-Schnittler M, Schnittler HJ, Kemper B (2016) Online quantitative phase imaging of vascular endothelial cells under fluid shear stress utilizing digital holographic microscopy. SPIE Proc 9718:97180U

    Google Scholar 

  58. Kemper B, Wibbeling J, Ketelhut S (2014) Analysis of mixed cell cultures with quantitative digital holographic phase microscopy. SPIE Proc 9129:91290W

    Google Scholar 

  59. Kemper B, Vollmer A, Rommel CE, Schnekenburger J, von Bally G (2011) Simplified approach for quantitative digital holographic phase contrast imaging of living cells. J Biomed Opt 16(2):026014

    PubMed  Google Scholar 

  60. Schubert R, Vollmer A, Ketelhut S, Kemper B (2014) Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens. Biomed Opt Express 5(12):4213–4222

    PubMed  PubMed Central  Google Scholar 

  61. Poon TC (ed) (2006) Digital holography and three-dimensional display. Springer, Boston

    Google Scholar 

  62. Yaroslavsky L (2004) Digital holography and digital image processing: principles, methods, algorithms. Kluwer Academic Publishers, Boston

    Google Scholar 

  63. Kreis T (2005) Handbook of holographic interferometry: optical and digital methods. Wiley-VCH, Weinheim

    Google Scholar 

  64. Kim MK, Yu L, Mann CJ (2006) Interference techniques in digital holography. J Opt A8:518–523

    Google Scholar 

  65. Goodman JW (1996) Introduction to Fourier optics. McGraw-Hill, New York

    Google Scholar 

  66. Colomb T, Montfort F, Depeursinge C (2008) Small reconstruction distance in convolution formalism. Digital holography and three-dimensional imaging. OSA Technical Digest, Optical Society of America, St. Petersburg

    Google Scholar 

  67. De Nicola S, Finizio A, Pierattini G, Ferraro P, Alfieri D (2005) Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt Express 13:9935–9940

    PubMed  Google Scholar 

  68. Kemper B, Kosmeier S, Langenhanenberg P, von Bally G, Bredebusch I, Domschke W, Schnekenburger J (2007) Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. J Biomed Opt 12:054009

    PubMed  Google Scholar 

  69. Shaked NT, Zhu Y, Bursac N, Wax A (2010) Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. J Biomed Opt 15(3):030503

    PubMed  PubMed Central  Google Scholar 

  70. Klokkers J, Langenhanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmüller C, Wunder F, Sindic A, Pavenstädt H, Schlatter E, Edemir B (2009) Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Renal Physiol 297(3):693–703

    Google Scholar 

  71. Creath K (1993) Temporal phase measurement methods. In: Robinson D, Reid G (eds) Interferogram analysis. Institute of Physics Publishing, Bristol, pp 94–140

    Google Scholar 

  72. Creath K (1994) Phase-shifting holographic interferometry. In: Rastogi RK (ed) Holographic interferometry. Springer, Berlin, pp 109–150

    Google Scholar 

  73. Liebling M, Blu T, Unser M (2004) Complex-wave retrieval from a single off-axis hologram. J Opt Soc Am A 21(3):367–377

    Google Scholar 

  74. Kemper B, Kandualla J, Dirksen D, von Bally G (2003) Optimization of spatial phase shifting in endoscopic electronic-speckle-pattern-interferometry. Opt Commun 217:151–160

    CAS  Google Scholar 

  75. Remmersmann C, Stürwald S, Kemper B, Langenhanenberg P, von Bally G (2009) Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl Optics 48:1463–1472

    Google Scholar 

  76. Langehanenberg P, von Bally G, Kemper B (2011) Autofocusing in digital holographic microscopy. 3D. Research 2(1):1–11

    Google Scholar 

  77. Marquet P, Rappaz B, Charrière F, Emery Y, Depeursinge C, Magistretti P (2007) Analysis of cellular structure and dynamics with digital holographic microscopy. SPIE Proc 6633:66330F

    Google Scholar 

  78. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156–160

    Google Scholar 

  79. Kreis T (1986) Digital holographic interference-phase measurement using the fourier transform method. J Opt Soc Am A 3:847–855

    CAS  Google Scholar 

  80. Rasheed S, Nelson-Rees WA, Toth EM, Amstein P, Gardner MB (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33:1027–1033

    CAS  PubMed  Google Scholar 

  81. Kemper B, Langenhanenberg P, Kosmeier S, Schlichthaber F, Remmersmann C, von Bally G, Rommel C, Dierker C, Schnekenburger J (2013) Digital holographic microscopy: quantitative phase imaging and applications in live cell analysis. Handbook of coherent-domain optical methods. Springer, Berlin, pp 215–257

    Google Scholar 

  82. Dubois F, Schockaert C, Callens N, Yourassowsky C (2006) Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 14:5895–5908

    PubMed  Google Scholar 

  83. Langehanenberg P, Kemper B, Dirksen D, von Bally G (2008) Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl Optics 47:D176–D182

    Google Scholar 

  84. Groen FC, Young IT, Ligthart G (1985) A comparison of different focus functions for use in autofocus algorithms. Cytometry A 6:81–91

    CAS  Google Scholar 

  85. Sun Y, Duthaler S, Nelson BJ (2004) Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc Res Tech 65:139–149

    PubMed  Google Scholar 

  86. Firestone L, Cook K, Culp K, Talsania N, Preston Jr K (1991) Comparison of autofocus methods for automated microscopy. Cytometry 12:195–206

    CAS  PubMed  Google Scholar 

  87. Bravo-Zanoguera M, von Massenbach B, Kellner AL, Price JH (1998) High-performance autofocus circuit for biological microscopy. Rev Sci Instrum 69:3966–3977

    CAS  Google Scholar 

  88. Langehanenberg P, Kemper B, von Bally G (2007) Autofocus algorithms for digital-holographic microscopy. SPIE Proc 6633:66330E

    Google Scholar 

  89. Elsässer HP, Lehr U, Kern HF (1992) Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma. Virchows Arch B 61(1):295–306

    PubMed  Google Scholar 

  90. Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S, Domagk D, Kemper B (2014) Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One 9(9):07317

    Google Scholar 

  91. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    PubMed  PubMed Central  Google Scholar 

  92. Popescu G, Park Y, Lue N, Best-Popescu C, Deflores L, Dasari RR, Feld MS, Badizadegan K (2008) Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol 295(2):C538–C544

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rappaz B, Canno E, Colomb T, Kühn J, Depeursinge C, Simanis V, Magistretti PJ, Marquet P (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14(3):034049

    PubMed  Google Scholar 

  94. Zangle TA, Teitell MA (2014) Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat Methods 11(12):1221–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Barer R (1952) Interference microscopy and mass determination. Nature 169:366–367

    CAS  PubMed  Google Scholar 

  96. Kosmeier S, Kemper B, Langenhanenberg P, Bredebusch I, Schnekenburger J, Bauwens A, von Bally G (2008) Determination of the integral refractive index of cells in suspension by digital holographic phase contrast microscopy. SPIE Proc 6991:699110

    Google Scholar 

  97. Kemper B, Bauwens A, Vollmer A, Ketelhut S, Langenhanenberg P, Muthing J, Karch H, von Bally G (2010) Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 15(3):036009

    PubMed  Google Scholar 

  98. Sridharan S, Mir M, Popescu G (2011) Simultaneous optical measurements of cell motility and growth. Biomed Opt Express 2(10):2815–2820

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, Sung KB, Avi TC, Yap PH, Liedberg B, Wang K, Bourouina T, Leprince-Wang Y (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16(4):634–644

    CAS  PubMed  Google Scholar 

  100. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A 94:4853–4860

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Käs J (2000) Optical deformability of soft biological dielectrics. Phys Rev Lett 84(23):5451

    CAS  PubMed  Google Scholar 

  102. Rappaz B, Marquet P, Cuche E, Emery Y, Depeursigne C, Magistretti PJ (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13(23):9361–9373

    PubMed  Google Scholar 

  103. Kemmler M, Fratz M, Giel DM, Saum N, Brandenburg A, Hoffmann C (2007) Noninvasive time-dependent cytometry monitoring by digital holography. J Biomed Opt 12(6):64002

    Google Scholar 

  104. Björk A (1996) Numerical methods for least squares problems. SIAM, Philadelphia

    Google Scholar 

  105. Kemper B, Dartmann S, Schlichthaber F, Vollmer A, Ketelhut S, von Bally G (2012) Self interference digital holographic microscopy for live cell imaging. SPIE Proc:842709

    Google Scholar 

  106. Rosner M, Schipany K, Hengstschläger M (2013) Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc 8(3):602–626

    PubMed  Google Scholar 

  107. Vandelaer M, Thiry M, Goessens G (1996) Isolation of nucleoli from ELT cells: a quick new method that preserves morphological integrity and high transcriptional activity. Exp Cell Res 228(1):125–131

    CAS  PubMed  Google Scholar 

  108. Chalut KJ, Ekpenyong AE, Clegg WL, Melhuish IC, Guck J (2012) Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. Integr Biol 4(3):280–284

    CAS  Google Scholar 

  109. Ekpenyong AE, Man SM, Achouri S, Bryant CE, Guck J, Chalut KJ (2013) Bacterial infection of macrophages induces decrease in refractive index. J Biophotonics 6(5):393–397

    PubMed  Google Scholar 

  110. Schürmann M, Scholze J, Müller P, Guck J, Chan CJ (2016) Cell nuclei have lower refractive index and mass density than cytoplasm. J Biophotonics 9(10):1068–1076

    PubMed  Google Scholar 

  111. Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D, Magistretti P, Marquet P, Depeursinge C (2013) Marker-free phase nanoscopy. Nat Photonics 7(2):113–117

    CAS  Google Scholar 

  112. Kuś A, Dudek M, Kemper B, Kuiawinski M, Vollmer A (2014) Tomographic phase microscopy of living three-dimensional cell cultures. J Biomed Opt 19(4):046009

    PubMed  Google Scholar 

  113. Kemper B, Klokkers J, Przbilla S, Vollmer A, Ketelhut S, von Bally G, Pavenstädt HJ, Schlatter E, Edemir B (2012) Tonicity induced changes in volume and refractive index of suspended cells quantified with digital holographic microscopy. Photonics Lett Poland 4(2):45–47

    CAS  Google Scholar 

  114. Przibilla S, Dartmann S, Vollmer A, Ketelhut S, Greve B, von Bally G, Kemper B (2012) Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes. J Biomed Opt 17(9):097001

    Google Scholar 

  115. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277

    CAS  PubMed  Google Scholar 

  116. Rappaz B, Charrière F, Depeursinge C, Magistretti PJ, Marquet P (2008) Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Opt Lett 33(7):744–746

    PubMed  Google Scholar 

  117. Debailleul M, Simon B, Georges V, Haeberle O, Lauer V (2008) Holographic microscopy and diffractive microtomography of transparent samples. Measur Sci Technol 19(7):074009

    Google Scholar 

  118. Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, Seggewiß J, Stock C, Ebnet K, Kiesel L, Riethmüller C, Götte M (2015) microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha V, and additional cytoskeletal elements. PLoS One 10(12):e0143993

    PubMed  PubMed Central  Google Scholar 

  119. Eggers JC, Martino V, Reinbold R, Schäfer SD, Kiesel L, Starzinski-Powitz A, Schüring AN, Kemper B, Greve B, Götte M (2016) microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online 32(4):434–445

    CAS  PubMed  Google Scholar 

  120. Greve B, Sheihk-Mounessi F, Kemper B, Ernst I, Götte M, Eich HT (2012) Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol 188(11):1038–1047

    CAS  PubMed  Google Scholar 

  121. Kunsmann L, Rüter C, Bauwens A, Greune L, Glüder M, Kemper B, Fruth A, Wai SN, He X, Lloubes R, Schmidt MA, Dobrindt U, Mellmann A, Karch H, Bielaszewska M (2015) Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci Rep 5:13252

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Farcal L, Torres Andón F, Di Christo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, Ponti J, Kinsner-Ovaskainen A, Rossi F, Oomen A, Bos P, Chen R, Bai R, Chen C, Rocks L, Fulton N, Ross B, Hutchison G, Tran L, Mues S, Ossig R, Schnekenburger J, Campagnolo L, Vecchione L, Pietroiusti A, Fadeel B (2015) Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One 10(5):e0127174

    PubMed  PubMed Central  Google Scholar 

  123. Mues S, Antunovic J, Ketelhut S, Kemper B, Schnekenburger J (2016) Novel optical approaches for label-free quantification of nano-cytotoxic effects. SPIE Proc 97190:97190J

    Google Scholar 

  124. Dubois F, Joannes L, Legros JC (1999) Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl Optics 38(34):7085–7094

    CAS  Google Scholar 

  125. Kemper B, Stürwald S, Remmersmann C, Langenhanekamp P, von Bally G (2008) Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt Lasers Eng 46:499–507

    Google Scholar 

  126. Langehanenberg P, von Bally G, Kemper B (2010) Application of partial coherent light in live cell imaging with digital holographic microscopy. J Mod Opt 57:709–717

    Google Scholar 

  127. Girshovitz P, Shaked NT (2013) Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy. Opt Express 21(5):5701–5714

    PubMed  Google Scholar 

  128. Singh AK, Faridian A, Gao P, Pedrini G, Osten W (2014) Quantitative phase imaging using a deep UV LED source. Opt Lett 39(12):3468–3471

    PubMed  Google Scholar 

  129. Dohet-Eraly J, Yourassowsky C, Mallahi AE, Dubois F (2016) Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy. Opt Lett 41(1):111–114

    PubMed  Google Scholar 

  130. Kühn J, Charrière F, Colomb T, Cuche E, Montfort F, Emery Y, Marquet P, Depeursinge C (2008) Axial sub-nanometer accuracy in digital holographic microscopy. Measur Sci Technol 19:074007

    Google Scholar 

  131. Kosmeier S, Langenhanekamp P, Przbilla S, von Bally G, Kemper B (2010) Multi-wavelength digital holographic microscopy for high resolution inspection of surfaces and imaging of phase specimen. SPIE Proc 7718:77180T

    Google Scholar 

  132. Kosmeier S, Langenhanenberg P, von Bally G, Kemper B (2012) Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length. Appl Phys B 106(1):107–115

    CAS  Google Scholar 

  133. Choi Y, Yang TD, Lee KJ, Choi W (2011) Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt Lett 36(13):2465–2467

    PubMed  Google Scholar 

  134. Kemper B, Kosmeier S, Langenhanenberg P, Przibilla S, Remmersmann C, Stürwald S, von Bally G (2009) Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy. SPIE Proc 7184:71840R

    Google Scholar 

  135. Miccio L, Finizio A, Puglisi R, Balduzzi D, Galli A, Ferraro P (2011) Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization. Biomed Opt Express 2(2):331–344

    PubMed  PubMed Central  Google Scholar 

  136. Girshovitz P, Shaked NT (2012) Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed Opt Express 3(8):1757–1773

    PubMed  PubMed Central  Google Scholar 

  137. Liu R, Dey DK, Boss D, Marquet P, Javidi B (2011) Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis. J Opt Soc Am A 28(6):1204–1210

    Google Scholar 

  138. Moon I, Javidi B, Yi F, Boss D, Marquet P (2012) Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. Opt Express 20(9):10295–10309

    CAS  PubMed  Google Scholar 

  139. Yi F, Moon I, Javidi B, Boss D, Marquet PP (2013) Automated segmentation of multiple red blood cells with digital holographic microscopy. J Biomed Opt 18(2):026006

    Google Scholar 

  140. Nguyen TH, Sridharan S, Marcias V, Balla AK, Do MN, Popescu G (2015) Prostate cancer diagnosis using quantitative phase imaging and machine learning algorithms. SPIE Proc 9336:933619

    Google Scholar 

  141. Charrière F, Marian A, Montfort F, Kuehn J, Colomb T, Cuche E, Marquet P, Depeursinge C (2006) Cell refractive index tomography by digital holographic microscopy. Opt Lett 31(2):178–180

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kemper, B. et al. (2019). Label-Free Quantitative In Vitro Live Cell Imaging with Digital Holographic Microscopy. In: Wegener, J. (eds) Label-Free Monitoring of Cells in vitro. Bioanalytical Reviews, vol 2. Springer, Cham. https://doi.org/10.1007/11663_2019_6

Download citation

Publish with us

Policies and ethics