Skip to main content

Dynamic Shape and Appearance Modeling Via Moving and Deforming Layers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We propose a model of the shape, motion and appearance of a sequence of images that captures occlusions, scene deformations, arbitrary viewpoint variations and changes in irradiance. This model is based on a collection of overlapping layers that can move and deform, each supporting an intensity function that can change over time. We discuss the generality and limitations of this model in relations to existing ones such as traditional optical flow or motion segmentation, layers, deformable templates and deformotion. We then illustrate how this model can be used for inference of shape, motion, deformation and appearance of the scene from a collection of images. The layering structure allows for automatic inpainting of partially occluded regions. We illustrate the model on synthetic and real sequences where existing schemes fail; we implement our gradient-based infinite-dimensional optimization using level set methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Weickert, J., Sanchez, J.: A scale-space approach to nonlocal optical flow calculations. In: Scale Space 1999, pp. 235–246 (1999)

    Google Scholar 

  2. Baker, S., Matthews, I., Schneider, J.: Image coding with active appearance models. Technical report, Carnegie Mellon University, The Robotics Institute (2003)

    Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 417–424. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (2000)

    Google Scholar 

  4. Blake, A., Isard, M.: Active contours. Springer, Heidelberg (1998)

    Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Proc. of the Eur. Conf. on Comp. Vis., pp. 484–496 (1998)

    Google Scholar 

  7. Cremers, D.: Multiphase levelset framework for variational motion segmentation. In: Intl. Conf. on Scale Space Theories in Computer Vision, June 2003, pp. 599–614 (2003)

    Google Scholar 

  8. Deriche, R., Kornprobst, P., Aubert, G.: Optical flow estimation while preserving its discontinuities: a variational approach. In: Proc. of ACCV, vol. 2, pp. 290–295 (1995)

    Google Scholar 

  9. Grenander, U.: General Pattern Theory. Oxford University Press, Oxford (1993)

    Google Scholar 

  10. Haussecker, H.W., Fleet, D.J.: Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 661–673 (2001)

    Article  Google Scholar 

  11. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artificial Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  12. Hsu, S., Anandan, P., Peleg, S.: Accurate computation of optical flow by using layered motion representations. In: Proc. IEEE Conf. on Comp. Vision and Pattern Recogn., pp. 1621–1626 (1992)

    Google Scholar 

  13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. of Computer Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  14. Miller, M.I., Younes, L.: Group action, diffeomorphism and matching: a general framework. In: Proc. of SCTV (1999)

    Google Scholar 

  15. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi equations. J. of Comp. Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)

    Article  Google Scholar 

  17. Paragios, N., Rousson, M., Ramesh, V.: Non-rigid registration using distance functions. Comput. Vis. Image Underst. 89(2-3), 142–165 (2003)

    Article  MATH  Google Scholar 

  18. Schnörr, C.: Computation of discontinuous optical flow by domain decomposition and shape optimization. Int. J. of Computer Vision 8(2), 153–165 (1992)

    Article  Google Scholar 

  19. Soatto, S., Yezzi, A.: Deformotion: deforming motion, shape average and the joint segmentation and registration of images. In: Proc. of the Eur. Conf. on Computer Vision (ECCV), vol. 3, pp. 32–47 (2002)

    Google Scholar 

  20. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Trans. on Image Processing 3(5), 625–638 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jackson, J.D., Yezzi, A., Soatto, S. (2005). Dynamic Shape and Appearance Modeling Via Moving and Deforming Layers. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_28

Download citation

  • DOI: https://doi.org/10.1007/11585978_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics