Skip to main content

A Computational Approach to Fisher Information Geometry with Applications to Image Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We develop a computational approach to non-parametric Fisher information geometry and algorithms to calculate geodesic paths in this geometry. Geodesics are used to quantify divergence of probability density functions and to develop tools of data analysis in information manifolds. The methodology developed is applied to several image analysis problems using a representation of textures based on the statistics of multiple spectral components. Histograms of filter responses are viewed as elements of a non-parametric statistical manifold, and local texture patterns are compared using information geometry. Appearance-based object recognition experiments, as well as region-based image segmentation experiments are carried out to test both the representation and metric. The proposed representation of textures is also applied to the development of a spectral cartoon model of images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.: Differential-geometrical methods of statistics. Lecture Notes in Statistics, vol. 28. Springer, Berlin (1985)

    Google Scholar 

  2. Amari, S., Nagaoka, H.: Methods of information geometry. AMS and Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Blake, A., Zisserman, A.: Visual reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  4. Chan, T., Shen, J., Vese, L.: Variational PDE models in image processing. Notices Amer. Math. Soc. 50, 14–26 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Dawid, A.P.: Discussion of defining a curvature of a statistical problem (with applications to second-order efficiency) by B. Efron. The Annals of Statistics 3, 1231–1234 (1975)

    MathSciNet  Google Scholar 

  6. Donoho, D.L., Flesia, A.G.: Can recent innovations in harmonic analysis ‘explain’ key findings in natural image statistics? Network: Computation in Neural Systems 12(3), 371–393 (2001)

    MATH  Google Scholar 

  7. Dryden, I.L., Mardia, K.V.: Statistical shape analysis. John Wiley & Son, Chichester (1998)

    MATH  Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  9. Hoffmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 1–14 (1997)

    Article  Google Scholar 

  10. Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  11. Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)

    Google Scholar 

  12. Karcher, H.: Riemann center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape manifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 372–383 (2004)

    Article  Google Scholar 

  14. Liu, X., Cheng, L.: Independent spectral representations of images for recognition. J. Optical Soc. of America 20(7) (2003)

    Google Scholar 

  15. Mumford, D.: The Bayesian rationale for energy functionals. In: Romeny, B. (ed.) Geometry-Driven Diffusion in Computer Vision, pp. 141–153. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  16. Mumford, D.: Elastica and computer vision, pp. 491–506. Springer, New York (1994)

    Google Scholar 

  17. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pistone, B., Sempi, C.: An infinite-dimensional geometric structure on the space of all probability measures equivalent to a given one. The Annals of Statistics 23(5), 1543–1561 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Portilla, J., Simoncelli, E.P.: A parametric texture model based on join statistics of complex wavelet coeeficients. International Journal of Computer Vision 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  20. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  21. Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning and testing. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 590–602 (2005)

    Article  Google Scholar 

  22. Srivastava, A., Liu, X., Grenander, U.: Universal analytical forms for modeling image probability. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1200–1214 (2002)

    Article  Google Scholar 

  23. Wu, Y.N., Zhu, S.C., Liu, X.: Equivalence of Julesz ensembles and FRAME models. International Journal of Computer Vision 38(3), 247–265 (2000)

    Article  MATH  Google Scholar 

  24. Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (FRAME). International Journal of Computer Vision 27, 1–20 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mio, W., Badlyans, D., Liu, X. (2005). A Computational Approach to Fisher Information Geometry with Applications to Image Analysis. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_2

Download citation

  • DOI: https://doi.org/10.1007/11585978_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics