Skip to main content

Statistical Properties of Dissipative MHD Accelerators

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

Abstract

We use exact orbit integration to investigate particle acceleration in a Gauss field proxy of magnetohydrodynamic (MHD) turbulence. Regions where the electric current exceeds a critical threshold are declared to be ‘dissipative’ and endowed with super-Dreicer electric field E Ω = η j. In this environment, test particles (electrons) are traced and their acceleration to relativistic energies is studied. As a main result we find that acceleration mostly takes place within the dissipation regions, and that the momentum increments have heavy (non-Gaussian) tails, while the waiting times between the dissipation regions are approximately exponentially distributed with intensity proportional to the particle velocity. No correlation between the momentum increment and the momentum itself is found. Our numerical results suggest an acceleration scenario with ballistic transport between independent ‘black box’ accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, J., Cargill, P.J., Emslie, A.G., Holman, G.D., Dennis, B.R., LaRosa, T.N., Winglee, R.M., Benka, S.G., Tsuneta, S.: J. Geophys. Res, 102, 14.631 (1997)

    Google Scholar 

  2. Karimabadi, Menyuk, C.R., Sprangle, P., Vlahos, L.: Astrophys. J., 316, 462 (1987)

    Google Scholar 

  3. Miller J., Ramaty, R.: Solar Phys., 113, 195 (1987)

    Google Scholar 

  4. Miller, J., LaRosa, T.N., Melrose, R.L.: Astrophys. J., 461, 445 (1996)

    Google Scholar 

  5. Miller, J., J.A.: Astrophys. J., 491, 939 (1997)

    Google Scholar 

  6. Biskamp, D., Müller, W.C.: Phys. Plasmas, 7, 4889 (2000)

    Google Scholar 

  7. Treumann, R., Baumjohann, W.: Basic Space Plasma Physics. Imperial College Press (1997)

    Google Scholar 

  8. Papadopoulos, K.: Dynamics of the Magnetosphere, ed. Akasofu & Reidel, Dordrecht (1997)

    Google Scholar 

  9. Parker, E.N.: Astrophys. J., 414, 389 (1993)

    Google Scholar 

  10. Dreicer, H.: Phys. Rev., 117, 329 (1960)

    Google Scholar 

  11. Parker, E.N.: Astrophys. J., 264, 635 (1983)

    Google Scholar 

  12. Matthaeus, W.H., Lamkin, S.L.: Phys. Fluids, 29, 2513 (1986)

    Google Scholar 

  13. Ambrosiano, J., Mattheus, W.H., Goldstein, M.L., Plante, D.: J. Geophys. Res., 93, 383 (1988)

    Google Scholar 

  14. Anastasiadis, A., Vlahos, L., Georgoulis, M.K.: Astrophys. J., 489, 367 (1997)

    Google Scholar 

  15. Dimitruk, P., Matthaeus, W.H., Seenu, N., Brown, M.R.: Astrophys. J. Lett., 597, L81 (2003)

    Google Scholar 

  16. Moriyashu, S., Kudoh, T., Yokoyama, T., Shibata, K.: Astrophys. J, 601, L107 (2004)

    Google Scholar 

  17. Arzner, K., Vlahos, L.: Astrophys. J. Lett., 605, L69 (2004)

    Google Scholar 

  18. Karimabadi, H.N. Omidi, C.R.: Menyuk 1990. Phys. Fluids B, 2, 606

    Google Scholar 

  19. Schlickeiser, R.: Cosmic Ray Astrophysics. Springer, Berlin (2002)

    Google Scholar 

  20. Gardiner, C.W.: Handbook of stochastic methods. Springer, Heidelberg (1985)

    Google Scholar 

  21. Littlejohn, R.G.: J. Math. Phys. 23(5), 742 (1982)

    Google Scholar 

  22. Littlejohn, R.G.: J. Plasma Physics, 29, 111 (1983)

    Google Scholar 

  23. Adler, R.J.: The Geometry of Random Fields. John Wiley & Sons, Chichester (1981)

    MATH  Google Scholar 

  24. Büchner, J., Zelenyi, L.M.: J. Geophys. Res., 94, 11.821 (1989)

    Google Scholar 

  25. Cargill, P.J.: in: Encyclopedia of Astronomy and Astrophysics – Solar flares: Particle Acceleration Mechanisms, Nature Publ. Group, IOPP, Bristol, UK (2001)

    Google Scholar 

  26. Lukacs, E.: Characteristic Functions, Charles Griffin, London (1960)

    Google Scholar 

  27. Uchaikin, V.V.: Int. J. of Theoretical Physics, 39, no 8, 2087 (2000)

    Google Scholar 

  28. Meerschaert, M.M., Benson, D.A.: Phys. Rev. E, 66, 060102(R) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arzner, K., Vlahos, L., Knaepen, B., Denewet, N. (2006). Statistical Properties of Dissipative MHD Accelerators. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_64

Download citation

  • DOI: https://doi.org/10.1007/11558958_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics