Skip to main content

Towards Fault-Tolerant Formal Concept Analysis

  • Conference paper
Book cover AI*IA 2005: Advances in Artificial Intelligence (AI*IA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3673))

Included in the following conference series:

Abstract

Given Boolean data sets which record properties of objects, Formal Concept Analysis is a well-known approach for knowledge discovery. Recent application domains, e.g., for very large data sets, have motivated new algorithms which can perform constraint-based mining of formal concepts (i.e., closed sets on both dimensions which are associated by the Galois connection and satisfy some user-defined constraints). In this paper, we consider a major limit of these approaches when considering noisy data sets. This is indeed the case of Boolean gene expression data analysis where objects denote biological experiments and attributes denote gene expression properties. In this type of intrinsically noisy data, the Galois association is so strong that the number of extracted formal concepts explodes. We formalize the computation of the so-called δ-bi-sets as an alternative for capturing strong associations between sets of objects and sets of properties. Based on a previous work on approximate condensed representations of frequent sets by means of δ-free itemsets, we get an efficient technique which can be applied on large data sets. An experimental validation on both synthetic and real data is given. It confirms the added-value of our approach w.r.t. formal concept discovery, i.e., the extraction of smaller collections of relevant associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrechtz (1982)

    Google Scholar 

  2. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Machine Learning 2, 139–172 (1987)

    Google Scholar 

  3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings ISMB 2000, San Diego, USA, pp. 93–103. AAAI Press, Menlo Park (2000)

    Google Scholar 

  4. Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 323–335. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Dhillon, I., Mallela, S., Modha, D.: Information-theoretic co-clustering. In: Proceedings ACM SIGKDD 2003, Washington, USA, pp. 89–98. ACM Press, New York (2003)

    Google Scholar 

  6. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinf. 1, 24–45 (2004)

    Article  Google Scholar 

  7. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  8. Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)

    Article  MATH  Google Scholar 

  9. Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal concepts in transactional data. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 615–624. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.F.: Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: Proceedings ACM BIOKDD 2004, Seattle, USA, pp. 24–30 (2004)

    Google Scholar 

  11. Besson, J., Robardet, C., Boulicaut, J.F.: Mining formal concepts with a bounded number of exceptions from transactional data. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 33–45. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0–1 data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery 7, 5–22 (2003)

    Article  MathSciNet  Google Scholar 

  15. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings ACM SIGMOD 1993, Washington, D.C., USA, pp. 207–216. ACM Press, New York (1993)

    Chapter  Google Scholar 

  16. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1, 241–258 (1997)

    Article  Google Scholar 

  17. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  18. Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow, M., Scott, M., Davis, R., White, K.: Gene expression during the life cycle of drosophila melanogaster. Science 297, 2270–2275 (2002)

    Article  Google Scholar 

  19. Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E., Zhu, J., DeRisi, J.: The transcriptome of the intraerythrocytic developmental cycle of plasmodium falciparum. PLoS Biology 1, 1–16 (2003)

    Article  Google Scholar 

  20. Huynh, V.N., Nakamori, Y., Ho, T.B., Resconi, G.: A context model for fuzzy concept analysis based upon modal logic. Inf. Sci. 160, 111–129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pensa, R.G., Boulicaut, JF. (2005). Towards Fault-Tolerant Formal Concept Analysis. In: Bandini, S., Manzoni, S. (eds) AI*IA 2005: Advances in Artificial Intelligence. AI*IA 2005. Lecture Notes in Computer Science(), vol 3673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558590_22

Download citation

  • DOI: https://doi.org/10.1007/11558590_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29041-4

  • Online ISBN: 978-3-540-31733-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics