Skip to main content

The Parity Problem in the Presence of Noise, Decoding Random Linear Codes, and the Subset Sum Problem

(Extended Abstract)

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2005, RANDOM 2005)

Abstract

In [2], Blum et al. demonstrated the first sub-exponential algorithm for learning the parity function in the presence of noise. They solved the length-n parity problem in time 2O(n/logn) but it required the availability of 2O(n/logn) labeled examples. As an open problem, they asked whether there exists a 2o(n) algorithm for the length-n parity problem that uses only poly(n) labeled examples. In this work, we provide a positive answer to this question. We show that there is an algorithm that solves the length-n parity problem in time 2O(n/loglogn) using n 1 + ε labeled examples. This result immediately gives us a sub-exponential algorithm for decoding n × n 1 + ε random binary linear codes (i.e. codes where the messages are n bits and the codewords are n 1 + ε bits) in the presence of random noise. We are also able to extend the same techniques to provide a sub-exponential algorithm for dense instances of the random subset sum problem.

Research supported in part by NSF grant CCR-0093029.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Generating hard instances of lattice problems. In: Proc. 28th Annual Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  2. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. JACM 50(4), 506–519 (2003)

    Article  MathSciNet  Google Scholar 

  3. Flaxman, A., Przydatek, B.: Solving medium-density subset sum problems in expected polynomial time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 305–314. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Frieze, A.: On the Lagarias-Odlyzko algorithm for the subset sum problem. SIAM J. Comput. 15, 536–539 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldreich, O., Levin, L.A.: Hard-core predicates for any one-way function. In: Proc. 21st Annual Symposium on Theory of Computing, pp. 25–32 (1989)

    Google Scholar 

  6. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. Journal of Cryptology 9(4), 199–216 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Proc. 30th Annual Symposium on Foundations of Computer Science, pp. 248–253 (1989)

    Google Scholar 

  8. Lagarias, J.C., Odlyzko, A.M.: Solving low density subset sum problems. J. of the ACM 32, 229–246 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lyubashevsky, V.: On random high density subset sums, Technical Report TR05-007, Electronic Coloquium on Computational Complexity, ECCC (2005)

    Google Scholar 

  10. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measure. In: Proc. 45th Annual Symposium on Foundations of Computer Science, pp. 372–381 (2004)

    Google Scholar 

  11. Schroeppel, R., Shamir, A.: A T = O(2(n/2)), S = O(2(n/4)) algorithm for certain NP-complete problems. SIAM J. Comput. 10, 456–464 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  13. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lyubashevsky, V. (2005). The Parity Problem in the Presence of Noise, Decoding Random Linear Codes, and the Subset Sum Problem. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_32

Download citation

  • DOI: https://doi.org/10.1007/11538462_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics