Skip to main content

Finding a Maximum Independent Set in a Sparse Random Graph

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3624))

Abstract

We consider the problem of finding a maximum independent set in a random graph. The random graph G is modelled as follows. Every edge is included independently with probability \(\frac{d}{n}\), where d is some sufficiently large constant. Thereafter, for some constant α, a subset I of αn vertices is chosen at random, and all edges within this subset are removed. In this model, the planted independent set I is a good approximation for the maximum independent set I max , but both II max and I max I are likely to be nonempty. We present a polynomial time algorithms that with high probability (over the random choice of random graph G, and without being given the planted independent set I) finds a maximum independent set in G when \(\alpha \geq \sqrt{c_0 \log d /d}\), where c 0 is some sufficiently large constant independent of d.

This work was supported in part by a grant from the G.I.F., the German-Israeli Foundation for Scientific Research and Development. Part of this work was done while the authors were visiting Microsoft Research in Redmond, Washington.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM Journal on Computing 26(6), 1733–1748 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Random Structures and Algorithms 13(3-4), 457–466 (1988)

    Article  MathSciNet  Google Scholar 

  3. Chen, H., Frieze, A.: Coloring bipartite hypergraphs. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 345–358. Springer, Heidelberg (1996)

    Google Scholar 

  4. Coja-Oghlan, A.: A spectral heuristic for bisecting random graphs. In: SODA 2005, pp. 850–859 (2005)

    Google Scholar 

  5. Coja-Oghlan, A.: Finding Large Independent Sets in Polynomial Expected Time. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 511–522. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Feige, U.: Approximating maximum clique by removing subgraphs. Siam J. on Discrete Math. 18(2), 219–225 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. Journal of Computing and System Sciences 63(4), 639–671 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a semirandom graph. Random Structures and Algorithms 16(2), 195–208 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flaxman, A.: A spectral technique for random satisfiable 3cnf formulas. In: SODA 2003, 357– 363 (2003)

    Google Scholar 

  10. Goerdt, A., Lanka, A.: On the hardness and easiness of random 4-SAT formulas. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 470–483. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Grimmet, G., McDiarmid, C.: On colouring random graphs. Math. Proc. Cam. Phil. Soc. 77, 313–324 (1975)

    Article  Google Scholar 

  12. Håstad, J.: Clique is hard to approximate within n1 − ε. Acta Mathematica 182(1), 105–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jerrum, M.: Large clique elude the metropolis process. Random Structures and Algorithms 3(4), 347–359 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karp, R.M.: The probabilistic analysis of some combinatorial search algorithms. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent Results, pp. 1–19. Academic Press, New York (1976)

    Google Scholar 

  15. Kučera, L.: Expected complexity of graph partitioning problems. Discrete Appl. Math. 57(2-3), 193–212 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feige, U., Ofek, E. (2005). Finding a Maximum Independent Set in a Sparse Random Graph. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_24

Download citation

  • DOI: https://doi.org/10.1007/11538462_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics