Skip to main content

Gap-Junctions Promote Synchrony in a Network of Inhibitory Interneurons in the Presence of Heterogeneities and Noise

  • Conference paper
Mechanisms, Symbols, and Models Underlying Cognition (IWINAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3561))

Abstract

Recent experiments revealed that inhibitory interneurons networks are coupled by both electrical and inhibitory synapses. Moreover these findings suggest that a population of interneurons operate as a clockwork affecting the processing of neural information. In this paper we determine, in the weak coupling limit, the parameter values leading to the emergence of synchronous regime in a pair of Fast Spiking interneurons coupled by chemical and electrical synapses. Then, our results will be compared with those obtained recently in [1] for a pair of coupled Integrate & Fire neural models. Next, the effects of heterogeneities and noise on the coherence properties of the network (containing two or more coupled units) will be investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, T., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comp. Neuroscience 14, 283–309 (2003)

    Article  Google Scholar 

  2. Galarreta, M., Hestrin, S.: Electrical synapses between GABA-releasing interneurons. Nat. Neurosci. 2, 425–433 (2001)

    Article  Google Scholar 

  3. Di Garbo, A., Barbi, M., Chillemi, S.: Synchronization in a network of fast-spiking interneurons. BioSystems 67, 45–53 (2002)

    Article  Google Scholar 

  4. Di Garbo, A., Panarese, A., Chillemi, S.: Gap-junctions promote synchronous activities in a network of inhibitory interneurons. BioSystems 79, 91–99 (2005)

    Article  Google Scholar 

  5. Van Vreeswijk, C.A., Abbott, L.F., Ermentrout, G.B.: Inhibition, not excitation, synchronizes coupled neurons. J. Comp. Neuroscience 1, 303–313 (1995)

    Google Scholar 

  6. Wang, X.J., Rinzel, J.: Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992)

    Article  Google Scholar 

  7. Wang, X.J., Buzsaki, G.: Gamma oscillations by synaptic inhibition in an interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)

    Google Scholar 

  8. Whittington, M.A., Traub, R.D., Jefferys, J.G.R.: Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995)

    Article  Google Scholar 

  9. Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B., Buhl, E.H.: Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysio. 38, 315–336 (2001)

    Article  Google Scholar 

  10. Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the cortex connected by electrical synapses. Nature 402, 72–75 (1999)

    Article  Google Scholar 

  11. Gibson, J.R., Beierlein, M., Connors, B.W.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999)

    Article  Google Scholar 

  12. Erisir, A., Lau, D., Rudy, B., Leonard, C.S.: Function of specific K  +  channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiology 82, 2476–2489 (1999)

    Google Scholar 

  13. Galarreta, M., Hestrin, S.: Electrical and chemical Synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. PNAS USA 99, 12438–12443 (2002)

    Article  Google Scholar 

  14. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, Segev (eds.) Methods in neural modelling. The MIT Press, Cambridge (1989)

    Google Scholar 

  15. Martina, M., Jonas, P.: Functional differences in Na  +  channel gating between fast spiking interneurons and principal neurons of rat hippocampus. J. of Physiol. 505.3, 593–603 (1997)

    Article  Google Scholar 

  16. Coetzee, W.A., et al.: Molecular diversity of K  +  channels. Annals of the New York Academy of Sciences 868, 233–285 (1999)

    Article  Google Scholar 

  17. Lien, C.C., Jonas, P.: Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. of Neurosci. 23, 2058–2068 (2003)

    Google Scholar 

  18. Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chillemi, S., Panarese, A., Barbi, M., Di Garbo, A. (2005). Gap-Junctions Promote Synchrony in a Network of Inhibitory Interneurons in the Presence of Heterogeneities and Noise. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_8

Download citation

  • DOI: https://doi.org/10.1007/11499220_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics