Skip to main content

Integrating CSP Decomposition Techniques and BDDs for Compiling Configuration Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3524))

Abstract

We present the tree-of-BDDs approach, a decomposition scheme for compiling configuration problems. Methods for minimum explanations and full interchangeable value sets detection are also given. Experiments show that the techniques presented here can drastically reduce the time and space requirements for interactive configurators.

This work was supported by the FIRST Graduate School (http://first.dk/).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 8, 677–691 (1986)

    Article  Google Scholar 

  2. Subbarayan, S., Jensen, R.M., Hadzic, T., Andersen, H.R., Hulgaard, H., Møller, J.: Comparing two implementations of a complete and backtrack-free interactive configurator. In: CP 2004 CSPIA Workshop, pp. 97–111 (2004)

    Google Scholar 

  3. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic CSPs-application to configuration. Artificial Intelligence 1-2, 199–234 (2002)

    Article  MathSciNet  Google Scholar 

  5. Madsen, J.N.: Methods for interactive constraint satisfaction. Master’s thesis, Department of Computer Science, University of Copenhagen (2003)

    Google Scholar 

  6. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: AAAI, pp. 25–32 (1989)

    Google Scholar 

  7. van der Meer, E.R., Andersen, H.R.: BDD-based recursive and conditional modular interactive product configuration. In: CP 2004 CSPIA Workshop, pp. 112–126 (2004)

    Google Scholar 

  8. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  9. Junker, U.: Quickxplain: Conflict detection for arbitrary constraint propagation algorithms. In: IJCAI Workshop on Modelling and Solving with constraints (2001)

    Google Scholar 

  10. Jussien, N.: e-constraints: explanation-based constraint programming. In: CP 2001 Workshop on User-Interaction in Constraint Satisfaction (2001)

    Google Scholar 

  11. Freuder, E.C., Likitvivatanavong, C., Moretti, M., Rossi, F., Wallace, R.J.: In: O’Sullivan, B. (ed.) CologNet 2002. LNCS (LNAI), vol. 2627, pp. 58–71. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press/McGraw-Hill (2001)

    Google Scholar 

  13. Bouquet, F., Jégou, P.: Using OBDDs to handle dynamic constraints. Information Processing Letters 62, 111–120 (1997)

    Article  MathSciNet  Google Scholar 

  14. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction problems. In: AAAI, pp. 227–233 (1991)

    Google Scholar 

  15. CLib: Configuration library, Online http://www.itu.dk/doi/VeCoS/clib/

  16. Jensen, R.M.: CLab: A C++ library for fast backtrack-free interactive product configuration. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, p. 816. Springer, Heidelberg (2004), http://www.itu.dk/people/rmj/clab/

    Chapter  Google Scholar 

  17. iCoDE, Online, http://www.itu.dk/people/sathi/icode/

  18. Chauhan, P., Clarke, E.M., Jha, S., Kukula, J.H., Shiple, T.R., Veith, H., Wang, D.: Non-linear quantification scheduling in image computation. In: Proceedings of ICCAD, pp. 293–299 (2001)

    Google Scholar 

  19. Cabodi, G., Camurati, P., Quer, S.: Dynamic scheduling and clustering in symbolic image computation. In: Proceedings of DATE, pp. 150–157 (2002)

    Google Scholar 

  20. Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial Intelligence 115, 257–287 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fargier, H., Vilarem, M.C.: Compiling CSPs into tree-driven automata for interactive solving. Constraints 9, 263–287 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued decision diagrams: Theory and applications. Multiple-Valued Logic: An International Journal 4, 9–62 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Subbarayan, S. (2005). Integrating CSP Decomposition Techniques and BDDs for Compiling Configuration Problems. In: Barták, R., Milano, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2005. Lecture Notes in Computer Science, vol 3524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493853_26

Download citation

  • DOI: https://doi.org/10.1007/11493853_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26152-0

  • Online ISBN: 978-3-540-32264-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics