Skip to main content

Compact Error-Resilient Computational DNA Tiling Assemblies

  • Conference paper
DNA Computing (DNA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3384))

Included in the following conference series:

Abstract

The self-assembly process for bottom-up construction of nanostructures is of key importance to the emerging scientific discipline Nanoscience. However, self-assembly at the molecular scale is prone to a quite high rate of error. Such high error rate is a major barrier to large-scale experimental implementation of DNA tiling. The goals of this paper are to develop theoretical methods for compact error-resilient self-assembly and to analyze these methods by stochastic analysis and computer simulation. Prior work by Winfree provided an innovative approach to decrease tiling self-assembly errors without decreasing the intrinsic error rate ε of assembling a single tile. However, his technique resulted in a final structure that is four times the size of the original one. This paper describes various compact error-resilient tiling methods that do not increase the size of the tiling assembly. These methods apply to assembly of boolean arrays which perform input sensitive computations (among other computations). Our 2-way (3-way) overlay redundancy construction drops the error rate from ε to approximately ε 2 (ε 3), without increasing the size of the assembly. These results were further validated using stochastic analysis and computer simulation.

Extended abstract. For full paper, see [7]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bondarenko, B.A.: Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications. The Fibonacci Association (1993); Translated from Russian and edited by R. C. Bollinger

    Google Scholar 

  2. Chen, H.L., Cheng, Q., Goel, A., Huang, M.D., de Espanes, P.M.: Invadable self-assembly: Combining robustness with efficiency. In: ACM-SIAM Symposium on Discrete Algorithms, SODA (2004)

    Google Scholar 

  3. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  4. Lagoudakis, M.G., LaBean, T.H.: 2-D DNA self-assembly for satisfiability. In: DNA Based Computers V. DIMACS, vol. 54, pp. 141–154. American Mathematical Society (2000)

    Google Scholar 

  5. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)

    Article  Google Scholar 

  6. Reif, J.H.: Local parallel biomolecular computation. In: Rubin, H., Wood, D.H. (eds.) DNA-Based Computers 3. DIMACS, vol. 48, pp. 217–254. American Mathematical Society (1999)

    Google Scholar 

  7. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. Technical Report CS-2004-08, Duke University, Computer Science Department (2004)

    Google Scholar 

  8. Seeman, N.C.: DNA in a material world. Nature 421, 427–431 (2003)

    Article  MathSciNet  Google Scholar 

  9. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. Autonomous Studies, 43–98 (1956)

    Google Scholar 

  10. Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers 1. DIMACS, vol. 27, pp. 199–221. American Mathematical Society (1996)

    Google Scholar 

  11. Winfree, E.: Simulation of computing by self-assembly. Technical Report 1988.22, Caltech (1998)

    Google Scholar 

  12. Winfree, E., Bekbolatov, R.: Proofreading tile sets: logical error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  14. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical Society (1999)

    Google Scholar 

  15. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reif, J.H., Sahu, S., Yin, P. (2005). Compact Error-Resilient Computational DNA Tiling Assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_26

Download citation

  • DOI: https://doi.org/10.1007/11493785_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26174-2

  • Online ISBN: 978-3-540-31844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics