Skip to main content

Industrial Challenges of Recombinant Proteins

  • Chapter
  • First Online:
Current Applications of Pharmaceutical Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 171))

Abstract

The use of recombinant DNA methods to produce large quantities of protein for therapeutic uses has revolutionized medicine. Industrial challenges for manufacture of biotherapeutic proteins are related to the characteristics of these proteins and the increasing quantities required to address needs of patients, worldwide. A brief overview of therapies in which proteins are employed helps to frame some of the challenges facing their industrial production. The number of molecules and their applications have significantly expanded over the last 15–20 years, together with the quantities used to address specific indications. Challenges addressed include achieving cell density, protein expression, separations of cells and protein, protein purification, and segmentation of protein production into smaller quantities with the evolution of personalized medicine and products designed for increasingly small patient populations. This chapter highlights some of the current challenges.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FDA (2019) Quality considerations for continuous manufacturing: guidance for industry. https://www.fda.gov/media/121314/download

  2. Quianzon CC, Cheikh I (2012) History of insulin. J Community Hosp Intern Med Perspect 2:18701

    Google Scholar 

  3. Ladisch MR, Kohlmann K (1992) Recombinant human insulin. Biotechnol Prog 8(6):469–478

    CAS  PubMed  Google Scholar 

  4. Ellis LM (2006) Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol 33(5 Suppl 10):S1–S7

    CAS  PubMed  Google Scholar 

  5. Riechmann L, Clark M, Waldman H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    CAS  PubMed  Google Scholar 

  6. Thayer AM (1998) Great expectations. Chem Eng News 76:19

    Google Scholar 

  7. Rader RA (2012) Top 50 (or so) biopharma products. Contract Pharma

    Google Scholar 

  8. Kaplon H, Reichert JM (2019) Antibodies to watch in 2019. MAbs 11(2):219–238

    CAS  PubMed  Google Scholar 

  9. Doig AR, Ecker DM, Ransohoff TC (2015) Monoclonal antibody targets and indications. Am Pharm Rev 15:177490

    Google Scholar 

  10. Kelly B (2009) Industrialization of mAb production technology. MAbs 1(5):443–452

    Google Scholar 

  11. Johansson HJ, Cardillo D, Gerwe B (2017) Are all protein a resins the same? BioProcess Int 15(11):1–5. https://bioprocessintl.com/sponsored-content/protein-resins-performance-comparison-eight-different-protein-resins/

    Google Scholar 

  12. Wilkinson GW, Akrigg A (1992) Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res 20(9):2233–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Studier FW (2018) T7 expression systems for inducible production of proteins from cloned genes in E. coli. Curr Protoc Mol Biol 124(1):e63

    PubMed  Google Scholar 

  14. Fenton D, Lai PH, Lu H, Mann M, Tsai L (1997) Control of norleucine incorporation into recombinant proteins. US Patent 5,599,690

    Google Scholar 

  15. Rudge SR (2017) Single-use systems for biotechnology products. Eur Pharm Rev 22(2):64–66

    Google Scholar 

  16. Sinclair A, Leveen L, Monge M, Lim J, Cox S (2008) The environmental impact of disposable technologies. BioPharm Int Guide 11:1–11

    Google Scholar 

  17. Nims R, Plavsic M (2012) Circovirus inactivation: a literature review. Bioprocess J 11(1):4–10

    CAS  Google Scholar 

  18. Shevitz J (2003) Fluid filtration system. US Patent 6,544,424

    Google Scholar 

  19. Freeman CA, Samuel PSD, Kompala DS (2017) Compact cell settlers for perfusion cultures of microbial (and mammalian) cells. Biotechnol Prog 33(4):913–922

    CAS  PubMed  Google Scholar 

  20. Kompala DS (2017) Particle settling devices. US patent application US 2017/0333815A1

    Google Scholar 

  21. Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444

    PubMed  Google Scholar 

  22. Lee S (2017) Modernizing the way drugs are made: a transition to continuous manufacturing. https://www.fda.gov/drugs/news-events-human-drugs/modernizing-way-drugs-are-made-transition-continuous-manufacturing

  23. NASEM (2019) Continuous manufacturing workshop. National Academies of Sciences, Engineering, and Medicine, Washington

    Google Scholar 

  24. Harrison RG, Todd P, Rudge SR, Petrides DP (2015) Bioseparations science and engineering.2nd edn. Oxford University Press, New York

    Google Scholar 

  25. Van den Pol LA (1998) Sparging-shear sensitivity of animal cells. Thesis Landbouwuniversiteit Wageningen

    Google Scholar 

  26. 9th annual report and survey of biopharmaceutical manufacturing capacity and production: a survey of biotherapeutic developers and contract manufacturing organizations, BioPlan Associates, Inc., Rockville, 2012. www.bioplanassociates.com

  27. Ladisch MR (2001) Bioseparations engineering: principles, practice, and economics. Wiley, New York, 735 pp

    Google Scholar 

  28. Wankat P (1986) Large scale adsorption and chromatography, volume. CRC Press, Boca Raton, p 1

    Google Scholar 

  29. Gibbs SJ, Lightfoot EN (1986) Scaling up gradient elution chromatography. Ind Eng Chem Fundam 25(4):490–498

    CAS  Google Scholar 

  30. Velayudhan A, Ladisch MR (1992) Effect of modulator sorption in gradient elution chromatography: gradient deformation. Chem Eng Sci 47(1):233–239

    CAS  Google Scholar 

  31. Peskin AP, Rudge SR (1992) Optimization of large-scale chromatography for biotechnological applications. Appl Biochem Biotechnol 34/45:49

    Google Scholar 

  32. Regnier FE (1991) Perfusion chromatography. Nature 350:634–635

    CAS  PubMed  Google Scholar 

  33. Ding H, Yang M-C, Schisla D, Cussler EL (1989) Hollow-fiber liquid chromatography. AICHE J 35(5):814–820

    CAS  Google Scholar 

  34. Arunkumar A, Etzel MR (2018) Fractionation of glycomacropeptide from whey using positively charged ultrafiltration membranes. Foods 7(10):166

    CAS  PubMed Central  Google Scholar 

  35. Ladisch MR, Zhang L (2016) Fiber-based monolithic columns for liquid chromatography. Anal Bioanal Chem 408(25):6871–6883

    CAS  PubMed  Google Scholar 

  36. Yang Y, Velayudhan A, Ladisch CM, Ladisch MR (1993) Liquid chromatography using cellulosic continuous stationary phases. In: Tsao GT (ed) Chromatography: advances in biochemical engineering/biotechnology, vol 49. Springer, Heidelberg

    Google Scholar 

  37. FDA. https://www.fda.gov/media/105605/download. Accessed 31 July 2019

Download references

Acknowledgments

The authors wish to acknowledge support from the College of Engineering from “Engineering Faculty Conversation on Future Manufacturing” and Hatch Act Support 10677 and 10646, Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott R. Rudge or Michael R. Ladisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudge, S.R., Ladisch, M.R. (2019). Industrial Challenges of Recombinant Proteins. In: Silva, A.C., Moreira, J.N., Lobo, J.M.S., Almeida, H. (eds) Current Applications of Pharmaceutical Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 171. Springer, Cham. https://doi.org/10.1007/10_2019_120

Download citation

Publish with us

Policies and ethics