Skip to main content

Photobioreactors in Life Support Systems

  • Chapter
  • First Online:
Microalgae Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 153))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LED:

Light-emitting diode

PCE:

Photo conversion efficiency

PBR:

Photobioreactor

CELSSs:

Controlled ecological life support systems

PAR:

Photosynthetically active radiation

BDM:

Bio dry mass

ModuLES:

Modular life support and energy systems

PFD:

Photon flux density

PAM:

Pulse amplitude modulation

D:

Dilution rate

OD:

Optical density

PSII:

Photosystem II

CTR:

Carbon dioxide transfer rate

OTR:

Oxygen transfer rate

CUR:

Carbon dioxide uptake rate

OPR:

Oxygen production rate

µ:

Specific growth rate

References

  1. Gitelson II, Terskov IA, Kovrov BG, Sidko FY, Lisovsky GM, Okladnikov YN, Belyanin VN, Trubachov IN, Rerberg MS (1976) Life support system with autonomous control employing plant photosynthesis. Acta Astronautica 3: 633–650

    Google Scholar 

  2. Mezhevikin VV, Okhonin VA, Bartsev SI, Gitelson JI (1994) Indications and counterindications for applying different versions of closed ecosystems for space and terrestrial problems of life support. Adv Space Res 14(11):11135–11142

    Article  Google Scholar 

  3. Wang GH, Li GB, Li DH, Liu YD, Song LR, Tong GH, Liu XM, Cheng ET (2004) Real-time studies on microalgae under microgravity. Acta Astronaut 55:131–137

    Article  CAS  Google Scholar 

  4. Wang G, Liu Y, Li G, Hu C, Zhang D, Li X (2008) A simple closed aquatic ecosystem (CAES) for space. Adv Space Res 41:684–690

    Article  Google Scholar 

  5. Schwartzkopf SH (1992) Design of a controlled ecological life support system. Bioscience 42(7):526–535

    Article  CAS  Google Scholar 

  6. Soeder CJ (1986) An historical outline of applied algology. In Richmand A (ed) CRC handbook of microalgal mass culture, pp 25–41

    Google Scholar 

  7. Wang G-H, Li G-B, Hu C-X, Liu Y-D, Song L-R, Tong G-H, Liu X-M, Cheng E-T (2004) Performance of a simple closed aquatic ecosystem (CAES) in space. Adv Space Res 34:1455–1460

    Article  Google Scholar 

  8. Turner MH (1989) Building an ecosystem from scratch. Bioscience 39:147–150

    Article  Google Scholar 

  9. Rea G, Esposito D, Damasso M, Serafini A, Margonelli A, Faraloni C, Torzillo G, Zanini A, Bertalan I, Johanningmeier U, Giardi MT (2008) Ionizing radiation impacts photochemical quantum yield and oxygen evolution activity of Photosystem II in photosynthetic microorganisms. Int J Radiat Biol 84(11):867–877

    Article  CAS  Google Scholar 

  10. Polyakov Y, Musaev I, Polyakov S (2010) Closed bioregenerative life support systems: applicability to hot deserts. Available from nature precedings <http://dx.doi.org/10.1038/npre.2010.3926.2> (2010)

  11. Nelson M, Allen J, Alling A, Dempster WF, Silverstone S (2003) Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere. Adv Space Res 31(7):1649–1655

    Article  CAS  Google Scholar 

  12. Xiao Y, Liu Y, Wang G, Hao Z, An Y (2010) Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon 56:1–7

    Article  CAS  Google Scholar 

  13. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  14. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  Google Scholar 

  15. Javanmardian M, Palsson B (1992) Design and operation of an algal photobiore actor system. Adv Space Res 12(5):5231–5235

    Article  Google Scholar 

  16. Wharton RA, Smernoff DT, Averner MM (1988) Algae in space. In: Lembi CE, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp. 486–509

    Google Scholar 

  17. Gitelson JI (1992) Biological life-support systems for Mars mission. Adv Space Res 12(5):167–192

    Article  CAS  Google Scholar 

  18. Spolaore P, Joannis-Cassan C, Duran E, Isamber A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  19. Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture, pp 312–351

    Google Scholar 

  20. Tang H, Chen M, Simon Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109(10):2468–2474

    Article  CAS  Google Scholar 

  21. Maeda I, Seto Y, Ueda S, Yukoh CG, Heri J, Kawase M, Miyasaka H, Yagi K (2006) Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94(4):722–729

    Article  CAS  Google Scholar 

  22. Lamers PP, van de Laack CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106(4):638–648

    Article  CAS  Google Scholar 

  23. Oguchi M, Otsubo K, Nitta K, Shimada A, Fujii S, Koyano T, Miki K (1989) Closed and continuous algae cultivation system for food production and gas exchange in CELSS. Adv Space Res 9(8):8169–8177

    Article  Google Scholar 

  24. Gitelson II, Degermendzhy AG, Rodicheva EK (2003) Self-restoration as fundamental property of CES providing their sustainability. Adv Space Res 31(7):1641–1648

    Article  CAS  Google Scholar 

  25. Korogodin VI (1966) Problems of post-radiation restoration. Atomizdat, Moscow 392

    Google Scholar 

  26. Klanjscek T, Legovic T (2001) Toward a closed life support system for interplanetary missions. Ecol Model 138:41–54

    Article  Google Scholar 

  27. Lehr F, Morweiser M, Rosello Sastre R, Kruse O, Posten C (2012) Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics. J Biotechnol 162(1):89–96

    Article  CAS  Google Scholar 

  28. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    Article  CAS  Google Scholar 

  29. Schaub G, Vetter A (2007) Biokraftstoffe—Eine Übersicht. Chem Ing Tech 79:569–578

    Article  CAS  Google Scholar 

  30. Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

  31. Li G-B, Liu Y-D, Wang G-H, Song L-R (2004) Reactive oxygen species and antioxidant enzymes activity of Anabena sp. PCC 7120 (Cyanobacterium) under simulated microgravity. Acta Astronaut 55:953–957

    Article  CAS  Google Scholar 

  32. Cerff M, Posten C (2012) Enhancing the growth of Physcomitrella patens by combination of monochromatic red and blue light—a kinetic study. Biotechnol J 7:527–536

    Article  CAS  Google Scholar 

  33. Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288

    Article  CAS  Google Scholar 

  34. Nedbal L, Trtilek M, Cerveny J, Komárek O, Pakrasi HB (2008) A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng 100(5):902–910

    Article  CAS  Google Scholar 

  35. Gordon J, Polle J (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975

    Article  CAS  Google Scholar 

  36. Bitog JP, Lee IB, Lee CG, Kim KS, Hwang H-S, Hong S-W, Seo I-H, Kwon K-S, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76:131–147

    Article  Google Scholar 

  37. Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol 53(1):101–111

    CAS  Google Scholar 

  38. Schaller KRD, Uhl R (1997) How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation. Biophys J 73(3):1562–1572

    Article  CAS  Google Scholar 

  39. Hegemann P, Harz H (1998) How microalgae see the light. Microbial responses to light and time. Cambridge University Press, Cambridge

    Google Scholar 

  40. Nagel GDO, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296(5577):2395–2398

    Article  CAS  Google Scholar 

  41. Nagel GT, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E (2005) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 33(4):863–886

    Article  CAS  Google Scholar 

  42. Rodríguez MC, Barsanti L, Passarelli V, Evangelista V, Conforti V, Gualtieri P (2007) Effects of chromium on the photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ Res 105:234–239

    Article  Google Scholar 

  43. Gualtieri P, Passarelli V, Barsanti L (1989) A simple instrument to perform in vivo absorption spectra of pigmented cellular organelles. Micron Microscopica Acta 20(2):107–110

    Article  Google Scholar 

  44. Emerson R, Rabinowitsch E (1960) Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35(4):477–485

    Article  CAS  Google Scholar 

  45. Haupt W (1959) Phototaxis der Algen. Handbuch der Pflanzenphysiologie. Bd. 17/1. S. 318–370. E. Bünning. Springer, Berlin-Göttingen-Heidelberg 1959

    Google Scholar 

  46. Farmintzin A (1878) Die Wirkung des Lichtes auf Algen und einige andere ihnen verwandte Organismen. Jahrbücher für Wissenschaftliche Botanik VI

    Google Scholar 

  47. Stavis RL, Hirschberg R (1973) Phototaxis in Chlamydomonas reinhardtii. J Cell Biol 59:367–377

    Article  CAS  Google Scholar 

  48. Nultsch W, Thorm G, Rimscha IV (1971) Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homokontinuierlicher Kultur. Arch Microbiol 80:351–369

    CAS  Google Scholar 

  49. Häder DP, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol 130: 78–82

    Google Scholar 

  50. Haldall P (1957) Importance of calcium and magnesium ions in phototaxis of motile green algae. Nature 26:215–216

    Article  Google Scholar 

  51. Mayer AM (1968) Chlamydomonas: adaption phenomena in phototaxis. Nature 217:875–876

    Article  Google Scholar 

  52. Takahashi T, Watanabe M (1993) Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. Effects of red background illumination and 3-(3’,4’-dichlorophenyl)-1,1-dimethylurea. FEBS Lett 336(3):516–520

    Article  CAS  Google Scholar 

  53. Ehrenberg GS (1883) Die Infusionstierchen als vollkommene organismen. In: Engelmann TW (ed), Leipzig, p 15

    Google Scholar 

  54. Melkonian M, Robeneck H (1984) The eyespot apparatus of flagellated green algae: a critical review. Progress in Phycological Research 3:193–286

    Google Scholar 

  55. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydo-monas reinhardtii. What is it for? What is it similar to? Plant Physiol 137(2): 399–409

    Google Scholar 

  56. Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakashini K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759

    Article  CAS  Google Scholar 

  57. Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. PNAS 99(13):8689–8694

    Article  CAS  Google Scholar 

  58. Forbes-Stovall J, Howton J, Young M, Davis G, Chandler T, Kessler B, Rinehart CA, Jacobshagen S (2014) Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. Plant Physiol Biochem 75:14–23

    Article  CAS  Google Scholar 

  59. Kondo T, Hirschie Johnson C, Woodland Hastings J (1991) Action Spectrum for resetting the circadian phototaxis rhythm in the cw15 strain of Chlamydomonas. Plant Physiol 95:197–205

    Article  CAS  Google Scholar 

  60. Oldenhof H, Bisová K, van den Ende H, Zachleder V (2004) Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii. Plant Physiol Biochem 42:341–348

    Article  CAS  Google Scholar 

  61. Münzner P, Voigt J (1992) Blue light regulation of cell division in Chlamydomonas reinhardtii. Plant Physiol 99:1370–1375

    Article  Google Scholar 

  62. Beckmann M, Hegemann P (1991) In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry 30(15):3692–3697

    Article  CAS  Google Scholar 

  63. Foster KW, Saranak J, Zarilli G (1988) Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii. Proc Nat Acad Sci USA 85:6379–6383

    Article  CAS  Google Scholar 

  64. Hegemann P, Hegemann U, Foster KW (1988) Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo. Photochem Photobiol 48:123–128

    Article  CAS  Google Scholar 

  65. Oldenhof H, Zachleder V, van den Ende H (2004) Blue light delays commitment to cell division in Chlamydomonas reinhardtii. Plant Biol 6:689–695

    Article  CAS  Google Scholar 

  66. Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. PNAS 100(10):6269–6274

    Article  CAS  Google Scholar 

  67. Kim DG, Lee C, Park S-M, Choi Y-E (2014) Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using chlorella vulgaris. Bioresour Technol 159:240–248

    Article  CAS  Google Scholar 

  68. Dionisio ML et al (1989) Blue light induction of carbonic-anhydrase activity in Chlamydomonas reinhardtii. Plant Cell Physiology 30:215–219

    CAS  Google Scholar 

  69. Dionisio ML, Tsuzuki K, Miyachi S (1989) Light requirement for carbonicanhydrase induction in Chlamydomonas reinhardtii. Plant Cell Physiol 30:207–213

    CAS  Google Scholar 

  70. Weissig H, Beck CF (1991) Action spectrum for the light-dependent step in gamete differentiation in Chlamydomonas reinhardtii. Plant Physiol 97:118–121

    Article  CAS  Google Scholar 

  71. Grossmann AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  Google Scholar 

  72. Jacobi A, Steinweg C, Rosello Sastre R, Posten C (2012) Advanced photobioreactor LED illumination system: scale-down approach to study microalgal growth kinetics. Eng Life Sci 12(6):621–630

    Article  CAS  Google Scholar 

  73. Lee CG, Palsson B (1994) High-density algal photo-bioreactors using light-emitting diodes. Biotechnol Bioeng 44(10):1161–1167

    Article  CAS  Google Scholar 

  74. Kommareddy A, Anderson G (2003) Study of light as parameter in the growth of algae in a photo-bio-reactor (PBR). ASAE annual international meeting presentation 034057, Las Vegas, USA

    Google Scholar 

  75. Javanmardian M, Palsson B (1991) High-density photoautotrophic algal cultures: design, construction, and operation of a novel photo-bioreactor system. Biotechnol Bioeng 38(10):1182–1189

    Article  CAS  Google Scholar 

  76. Pirt SJ, Lee YK, Richmond A, Watts-Pirt M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J Chem Technol Biotechnol 30:25–34

    Article  CAS  Google Scholar 

  77. Cuello JL (2002) Latest developments in artificial lighting technologies in Dutch horticulture for bioregenerative space life support. Acta Horti 580:49–56

    Article  Google Scholar 

  78. Massa GD, Emmerich JC, Morrow RC, Bourget CM, Mitchell CA (2006) Plant-Growth lighting for space life support: a review. Gravitational Space Biol 19(2):19–30

    Google Scholar 

  79. Pinho P, Jokinen K, Halonen L (2012) Horticultural lighting—present and future challenges. Lighting Res Technol 44:427–437

    Article  Google Scholar 

  80. Kuwahara SS, Cuello JL, Myhre G, Pau S (2011) Growth of the green algae Chlamydomonas reinhardtii under red and blue lasers. Opt Lasers Eng 49:434–438

    Article  Google Scholar 

  81. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  82. Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibers for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. J Chem Technol Biotechnol 71:61–70

    Article  CAS  Google Scholar 

  83. Drexler ILC, Yeh DH (2014) Membrane applications for microalgae cultivation and harvesting: a review. Rev Environ Sci Biotechnol 13:487–504

    Article  CAS  Google Scholar 

  84. Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82(2):170–179

    Article  CAS  Google Scholar 

  85. Heussler P, Castillo J, Merino S, Vasquez V (1978) Improvement in pond construction and CO2 supply for the mass production of microalgae. Archiv für Hydrobiologie 11:254–260

    Google Scholar 

  86. Talbot P, Gortares MP, Lencki RW, de la Noue J (1991) Absorption of CO2 in algal mass culture systems: a different characterization approach. Biotechnol Bioeng 37(9):834–842

    Article  CAS  Google Scholar 

  87. Frahm B, Kirchner S, Kauling J, Brod H, Langer U, Bödeker B (2007) Dynamische Membranbegasung im Bioreaktor zur Intensivierung der Sauerstoffversorgung empfindlicher Zelllinien. Chem Ing Tech 79(7):1052–1058

    Article  CAS  Google Scholar 

  88. Frahm B, Brod H, Langer U (2009) Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration. Cytotechnology 59:17–30

    Article  CAS  Google Scholar 

  89. Rubio FC, Fernandez FG, Perez JA, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  CAS  Google Scholar 

  90. Fan LH, Zhang YT, Cheng LH, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325:336–345

    Article  CAS  Google Scholar 

  91. Sun X, Wang C, Tang Y, Wang W, Wie J (2013) A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res 2:437–444

    Article  Google Scholar 

  92. Hwang T, Park SJ, Oh YK, Rashid N, Han JI (2013) Harvesting of Chlorella sp. KR-1 using a cross flow membrane filtration system equipped with an anti-fouling membrane. Bioresour Technol 139:379–382

    Article  CAS  Google Scholar 

  93. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    Article  CAS  Google Scholar 

  94. Côté P, Bersillon JL, Huyard A, Faup G (1988) Bubble-free aeration using membranes: process analysis. J Water Pollut Control Fed 60:1986–1992

    Google Scholar 

  95. Côté P, Bersillon JL, Huyard A (1989) Bubble-free aeration using membranes: mass transfer analysis. J Membr Sci 47:91–108

    Article  Google Scholar 

  96. Ahmed T, Semmens MJ (1992) The use of independently sealed microporous hollow fiber membranes for oxygenation of water: model development. J Membr Sci 69:11–20

    Article  CAS  Google Scholar 

  97. Ahmed T, Semmens MJ (1992) The use of independently sealed microporous hollow fiber membranes for oxygenation of water: experimental studies. J Membr Sci 69:1–10

    Article  CAS  Google Scholar 

  98. Lehmann J, Piehl GW, Schulz R (1987) Bubble-free cell culture aeration with porous moving membranes. Dev Biol Stand 66:227–240

    CAS  Google Scholar 

  99. Vorlop J, Lehmann J (1988) Scale-up of bioreactors for fermentation of mammalian cell cultures with special reference to oxygen. Chem Eng Technol 11:171–178

    Article  Google Scholar 

  100. Schneider M, Reymond F, Marison IW, von Stockar U (1995) Bubble-free oxygenation by means of hydrophobic porous membranes. Enzym Microb Technol 17:839–847

    Article  CAS  Google Scholar 

  101. Lee Y-K, Hing H-K (1989) Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl Microbiol Biotechnol 31:298–301

    Article  CAS  Google Scholar 

  102. Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272

    Article  CAS  Google Scholar 

  103. Cogne G, Cornet J-F, Gros J-B (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21:741–750

    Article  CAS  Google Scholar 

  104. Ai W, Guo S, Qin L, Tang Y (2008) Development of a ground-based space microalgae photo-bioreactor. Adv Space Res 41:742–747

    Article  CAS  Google Scholar 

  105. Farges B, Duchez D, Dussap CG, Cornet JF (1012) Preliminary characterization of carbon dioxide transfer in a hollow fiber membrane module as a possible solution for gas-liquid transfer in microgravity conditions. Adv Space Res 49:254–261

    Article  Google Scholar 

  106. Brechignac F, Schiller P (1992) Pilot CELSS based on a maltose-excreting Chlorella: concept and overview on the technological developments. Adv Space Res 12(5):533–536

    Article  Google Scholar 

  107. Oguchi M, Otsubo K, Nitta K, Shimada A, Fujii S, Koyano T, Miki K (1989) Closed and continuous algae cultivation system for food production and gas exchange in CELSS. Adv Space Res 9(8):8169–8177

    Article  Google Scholar 

  108. Mori K, Ohya H, Matsumoto K, Furuune H, Isozaki K, Siekmeier P (1989) Design for a bioreactor with sunlight supply and operations systems for use in the space environment. Adv Space Res 9(8):8161–8168

    Article  Google Scholar 

  109. Podhajsky S, Slenzka K, Harting B, Di Capua M, Posten C, Wagner I (2014) Physiological research and functional verification of the ModuLES-PBR. In: Presented at the 65th international astronautical congress IAC, Toronto

    Google Scholar 

  110. Posten C, Walter C (2012) Microalgal biotechnology: potential and production. De Gruyter, Berlin/Boston

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Slenzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wagner, I., Braun, M., Slenzka, K., Posten, C. (2015). Photobioreactors in Life Support Systems. In: Posten, C., Feng Chen, S. (eds) Microalgae Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 153. Springer, Cham. https://doi.org/10.1007/10_2015_327

Download citation

Publish with us

Policies and ethics