Skip to main content

Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations and Within Single Cells

  • Chapter
  • First Online:
High Resolution Microbial Single Cell Analytics

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 124))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GSD microscopy:

Ground state depletion microscopy

GSDIM:

Ground state depletion microscopy followed by individual molecule return

MMP:

Mitochondrial membrane potential

PALM:

Photoactivated localization microscopy

RESOLFT:

Reversible saturable/switchable optical linear (fluorescence) transitions

STED microscopy:

Stimulated emission depletion microscopy

STORM:

Stochastic optical reconstruction microscopy

TOM:

Translocase of the outer membrane

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch f Mikroskop Anat 9:413–420

    Google Scholar 

  2. Amchenkova AA, Bakeeva LE, Chentsov YS et al (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol 107:481–495

    CAS  Google Scholar 

  3. Arimura S, Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc Natl Acad Sci USA 99:5727–5731

    CAS  Google Scholar 

  4. Barbe L, Lundberg E, Oksvold P et al (2008) Toward a confocal subcellular atlas of the human proteome. Mol Cell Proteomics 7:499–508

    CAS  Google Scholar 

  5. Benard G, Bellance N, James D et al (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    CAS  Google Scholar 

  6. Benda C (1898) Ueber dier Spermatogenese de Verbebraten und höherer Evertebraten, II. Theil: Die Histogenese der Spermien. Arch Anat Physiol 73:393–398

    Google Scholar 

  7. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63

    CAS  Google Scholar 

  8. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  Google Scholar 

  9. Bodenstein-Lang J, Buch A, Follmann H (1989) Animal and plant mitochondria contain specific thioredoxins. FEBS Lett 258:22–26

    CAS  Google Scholar 

  10. Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynth Res 95:11–21

    CAS  Google Scholar 

  11. Born M, Wolf E (2002) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  12. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    CAS  Google Scholar 

  13. Brocard JB, Rintoul GL, Reynolds IJ (2003) New perspectives on mitochondrial morphology in cell function. Biol Cell 95:239–242

    CAS  Google Scholar 

  14. Buckman JF, Reynolds IJ (2001) Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci 21:5054–5065

    CAS  Google Scholar 

  15. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Google Scholar 

  16. Cassidy-Stone A, Chipuk JE, Ingerman E et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204

    CAS  Google Scholar 

  17. Cereghetti GM, Scorrano L (2006) The many shapes of mitochondrial death. Oncogene 25:4717–4724

    CAS  Google Scholar 

  18. Cerveny KL, Tamura Y, Zhang Z et al (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569

    CAS  Google Scholar 

  19. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    CAS  Google Scholar 

  20. Collins TJ, Berridge MJ, Lipp P et al (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627

    CAS  Google Scholar 

  21. Comeau JW, Costantino S, Wiseman PW (2006) A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 91:4611–4622

    CAS  Google Scholar 

  22. Conrad C, Gerlich DW (2010) Automated microscopy for high-content RNAi screening. J Cell Biol 188:453–461

    CAS  Google Scholar 

  23. Costes SV, Daelemans D, Cho EH et al (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003

    CAS  Google Scholar 

  24. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    CAS  Google Scholar 

  25. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  Google Scholar 

  26. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    Google Scholar 

  27. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    CAS  Google Scholar 

  28. Diaz G, Falchi AM, Gremo F et al (2000) Homogeneous longitudinal profiles and synchronous fluctuations of mitochondrial transmembrane potential. FEBS Lett 475:218–224

    CAS  Google Scholar 

  29. Diaz-Ruiz R, Averet N, Araiza D et al (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283:26948–26955

    CAS  Google Scholar 

  30. Distelmaier F, Koopman WJ, Testa ER et al (2008) Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytometry A 73:129–138

    Google Scholar 

  31. Dlaskova A, Spacek T, Santorova J et al (2010) 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim Biophys Acta 1797:1327–1341

    CAS  Google Scholar 

  32. Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–69

    CAS  Google Scholar 

  33. Dragunow M (2008) High-content analysis in neuroscience. Nat Rev Neurosci 9:779–788

    CAS  Google Scholar 

  34. Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci USA 99:3370–3375

    CAS  Google Scholar 

  35. Ehrenberg B, Montana V, Wei MD et al (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53:785–794

    CAS  Google Scholar 

  36. Fernandez-Moreno MA, Bornstein B, Petit N et al (2000) The pathophysiology of mitochondrial biogenesis: towards four decades of mitochondrial DNA research. Mol Genet Metab 71:481–495

    CAS  Google Scholar 

  37. Fiechter A, Fuhrmann GF, Kappeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol 22:123–183

    CAS  Google Scholar 

  38. Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    CAS  Google Scholar 

  39. Frazier AE, Kiu C, Stojanovski D et al (2006) Mitochondrial morphology and distribution in mammalian cells. Biol Chem 387:1551–1558

    CAS  Google Scholar 

  40. Glory E, Murphy RF (2007) Automated subcellular location determination and high-throughput microscopy. Dev Cell 12:7–16

    CAS  Google Scholar 

  41. Gorsich SW, Shaw JM (2004) Importance of mitochondrial dynamics during meiosis and sporulation. Mol Biol Cell 15:4369–4381

    CAS  Google Scholar 

  42. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    CAS  Google Scholar 

  43. Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30:269–297

    CAS  Google Scholar 

  44. Hamilton N (2009) Quantification and its applications in fluorescent microscopy imaging. Traffic 10:951–961

    CAS  Google Scholar 

  45. Held H (1893) Die centrale Gehorleitung. Arch f Anat u Physiol Anat Abt 201–248

    Google Scholar 

  46. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355

    CAS  Google Scholar 

  47. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    CAS  Google Scholar 

  48. Hell SW (2009a) Far-field optical nanoscopy. In: Single molecule spectroscopy in chemistry, physics and biology. Springer, Berlin

    Google Scholar 

  49. Hell SW (2009b) Microscopy and its focal switch. Nat Methods 6:24–32

    CAS  Google Scholar 

  50. Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14:599–609

    CAS  Google Scholar 

  51. Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A (Materials Science Processing) 77:859–860

    CAS  Google Scholar 

  52. Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497

    Google Scholar 

  53. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt Lett 19:780–782

    CAS  Google Scholar 

  54. Herold J, Schubert W, Nattkemper TW (2010) Automated detection and quantification of fluorescently labeled synapses in murine brain tissue sections for high throughput applications. J Biotechnol. doi:10.1016/j.jbiotec.2010.03.004

  55. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  Google Scholar 

  56. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    CAS  Google Scholar 

  57. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    CAS  Google Scholar 

  58. Huang HM, Fowler C, Zhang H et al (2004) Mitochondrial heterogeneity within and between different cell types. Neurochem Res 29:651–658

    CAS  Google Scholar 

  59. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    CAS  Google Scholar 

  60. Hutchins JR, Toyoda Y, Hegemann B et al (2010) Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593–599

    CAS  Google Scholar 

  61. Jacobson J, Duchen MR (2004) Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 256–257:209–218

    Google Scholar 

  62. Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763:561–575

    CAS  Google Scholar 

  63. Jakobs S, Martini N, Schauss AC et al (2003) Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J Cell Sci 116:2005–2014

    CAS  Google Scholar 

  64. Jourdain A, Martinou JC (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41:1884–1889

    CAS  Google Scholar 

  65. Jourdain I, Gachet Y, Hyams JS (2009) The dynamin related protein Dnm1 fragments mitochondria in a microtubule-dependent manner during the fission yeast cell cycle. Cell Motil Cytoskeleton 66:509–523

    CAS  Google Scholar 

  66. Kennedy EP, Lehninger AL (1949) Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J Biol Chem 179:957–972

    CAS  Google Scholar 

  67. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    CAS  Google Scholar 

  68. Kölliker A (1857) Einige Bemerkungen über die Endigungen der Hautnerven und den Bau der Muskeln. Zeitschr f wissensch Zool 8:311–325

    Google Scholar 

  69. Koopman WJ, Visch HJ, Smeitink JA et al (2006) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69:1–12

    Google Scholar 

  70. Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    CAS  Google Scholar 

  71. Kuznetsov AV, Hermann M, Saks V et al (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41:1928–1939

    CAS  Google Scholar 

  72. Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675

    CAS  Google Scholar 

  73. Lee YJ, Jeong SY, Karbowski M et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    CAS  Google Scholar 

  74. Lemasters JJ, Ramshesh VK (2007) Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol 80:283–295

    CAS  Google Scholar 

  75. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    CAS  Google Scholar 

  76. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838

    CAS  Google Scholar 

  77. Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441

    CAS  Google Scholar 

  78. Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J Exp Bot 51:865–871

    CAS  Google Scholar 

  79. Lowe M, Barr FA (2007) Inheritance and biogenesis of organelles in the secretory pathway. Nat Rev Mol Cell Biol 8:429–439

    CAS  Google Scholar 

  80. Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–586

    CAS  Google Scholar 

  81. Manders E, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Micros 169:375–382

    Google Scholar 

  82. Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548

    CAS  Google Scholar 

  83. Mannella CA, Pfeiffer DR, Bradshaw PC et al (2001) Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100

    CAS  Google Scholar 

  84. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–560

    CAS  Google Scholar 

  85. Meisinger C, Sickmann A, Pfanner N (2008) The mitochondrial proteome: from inventory to function. Cell 134:22–24

    CAS  Google Scholar 

  86. Modica-Napolitano JS, Kulawiec M, Singh KK (2007) Mitochondria and human cancer. Curr Mol Med 7:121–131

    CAS  Google Scholar 

  87. Muzzey D, van Oudenaarden A (2009) Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol 25:301–327

    CAS  Google Scholar 

  88. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–686

    CAS  Google Scholar 

  89. Negishi T, Nogami S, Ohya Y (2009) Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141:109–117

    CAS  Google Scholar 

  90. Neumann B, Walter T, Heriche JK et al (2010a) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727

    CAS  Google Scholar 

  91. Neumann D, Bückers J, Kastrup L et al (2010b) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3:4

    Google Scholar 

  92. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    CAS  Google Scholar 

  93. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–353

    CAS  Google Scholar 

  94. Nishino I, Kobayashi O, Goto Y et al (1998) A new congenital muscular dystrophy with mitochondrial structural abnormalities. Muscle Nerve 21:40–47

    CAS  Google Scholar 

  95. Nunnari J, Marshall WF, Straight A et al (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242

    CAS  Google Scholar 

  96. Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536

    CAS  Google Scholar 

  97. Park MK, Ashby MC, Erdemli G et al (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874

    CAS  Google Scholar 

  98. Parone PA, James DI, Da Cruz S et al (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 26:7397–7408

    CAS  Google Scholar 

  99. Patterson G, Davidson M, Manley S et al (2010) Superresolution Imaging using Single-Molecule Localization. Annu Rev Phys Chem 61:346–367

    Google Scholar 

  100. Peng T, Bonamy GM, Glory-Afshar E et al (2010) Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc Natl Acad Sci USA 107:2944–2949

    CAS  Google Scholar 

  101. Pepperkok R, Ellenberg J (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 7:690–696

    CAS  Google Scholar 

  102. Perkins GA, Tjong J, Brown JM et al (2010) The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J Neurosci 30:1015–1026

    CAS  Google Scholar 

  103. Premsler T, Zahedi RP, Lewandrowski U et al (2009) Recent advances in yeast organelle and membrane proteomics. Proteomics 9:4731–4743

    CAS  Google Scholar 

  104. Rasmusson AG, Geisler DA, Moller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60

    CAS  Google Scholar 

  105. Rebeille F, Alban C, Bourguignon J et al (2007) The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth Res 92:149–162

    CAS  Google Scholar 

  106. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218:286–292

    CAS  Google Scholar 

  107. Rittscher J (2010) Characterization of biological processes through automated image analysis. Annu Rev Biomed Eng 12:315–344

    CAS  Google Scholar 

  108. Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    CAS  Google Scholar 

  109. Rossignol R, Gilkerson R, Aggeler R et al (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    CAS  Google Scholar 

  110. Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the calyx of Held. J Neurosci 20:9135–9144

    CAS  Google Scholar 

  111. Rust M, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CAS  Google Scholar 

  112. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    CAS  Google Scholar 

  113. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    CAS  Google Scholar 

  114. Schauss AC, Bewersdorf J, Jakobs S (2006) Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J Cell Sci 119:3098–3106

    CAS  Google Scholar 

  115. Scheffler IE (2001) Mitochondria make a come back. Adv Drug Deliv Rev 49:3–26

    CAS  Google Scholar 

  116. Scheffler IE (2008) Mitochondria. Wieley, New Jersey

    Google Scholar 

  117. Schmidt R, Wurm CA, Jakobs S et al (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5:539–544

    CAS  Google Scholar 

  118. Schmidt R, Wurm CA, Punge A et al (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9:2508–2510

    CAS  Google Scholar 

  119. Schubert W, Bonnekoh B, Pommer AJ et al (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24:1270–1278

    CAS  Google Scholar 

  120. Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    CAS  Google Scholar 

  121. Shariff A, Kangas J, Coelho LP et al (2010) Automated image analysis for high-content screening and analysis. J Biomol Screen. doi:10.1177/1087057110370894

  122. Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    CAS  Google Scholar 

  123. Sheridan C, Delivani P, Cullen SP et al (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol Cell 31:570–585

    CAS  Google Scholar 

  124. Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675

    CAS  Google Scholar 

  125. Stevens B (1977) Variation in number and volume of the mitochondria in yeast according to growth conditions. A study based on serial sectioning and computer graphics reconstitution. Biol Cell 28:37–56

    Google Scholar 

  126. Sträuber H, Müller S (2010) Viability states of bacteria-specific mechanisms of selected probes. Cytometry A. doi:10.1002/cyto.a.20920

  127. Szabadkai G, Simoni AM, Bianchi K et al (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449

    CAS  Google Scholar 

  128. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–194

    CAS  Google Scholar 

  129. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    CAS  Google Scholar 

  130. Warren G, Wickner W (1996) Organelle inheritance. Cell 84:395–400

    CAS  Google Scholar 

  131. Weber K, Ridderskamp D, Alfert M et al (2002) Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells. Biol Chem 383:283–290

    CAS  Google Scholar 

  132. Wikstrom JD, Katzman SM, Mohamed H et al (2007) beta-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes 56:2569–2578

    CAS  Google Scholar 

  133. Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41:1914–1927

    CAS  Google Scholar 

  134. Wurm CA, Jakobs S (2006) Differential protein distributions define two subcompartments of the mitochondrial inner membrane in yeast. FEBS Lett 580:5628–5634

    CAS  Google Scholar 

  135. Yamaguchi R, Lartigue L, Perkins G et al (2008) Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31:557–569

    CAS  Google Scholar 

  136. Yamaguchi R, Perkins G (2009) Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1. Biochim Biophys Acta 1787:963–972

    CAS  Google Scholar 

  137. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    CAS  Google Scholar 

  138. Zellnig G, Zechmann B, Perktold A (2004) Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma 223:221–227

    CAS  Google Scholar 

Download references

Acknowledgments

We thank C.A. Wurm for insightful discussions and providing some of the STED images. We also thank R. Schmidt and A. Egner regarding STED microscopy of mitochondria, S.W. Hell for continuous support and J. Jethwa for carefully reading the manuscript. Part of the work reported in this review was supported by the Bundesministerium für Bildung und Forschung (BMBF) (SysCompart, to S.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jakobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobs, S., Stoldt, S., Neumann, D. (2010). Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations and Within Single Cells. In: Müller, S., Bley, T. (eds) High Resolution Microbial Single Cell Analytics. Advances in Biochemical Engineering / Biotechnology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_81

Download citation

Publish with us

Policies and ethics