Skip to main content

Biorefineries – Multi Product Processes

  • Chapter
  • First Online:
White Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 105))

Abstract

The development of biorefineries represents the key for access to an integrated production of food, feed, chemicals, materials, goods, and fuels of the future [1]. Biorefineries combine the necessary technologies of the biogenic raw materials with those of intermediates and final products. The main focus is directed at the precursors carbohydrates, lignin, oils, and proteins and the combination between biotechnological and chemical conversion of substances. Currently the lignocellulosic feedstock biorefinery, green biorefinery, whole corn biorefinery, and the so-called two-platform concept are favored in research, development, and industrial implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Research Council (NRC, USA) (2000) Biobased Industrial Products: Priorities for Research and Commercialization. National Academic Press, Washington, DC

    Google Scholar 

  2. Kamm B, Kamm M, Soyez K (eds) (1998) Die Grüne Bioraffinerie/The Green Biorefinery. Technologiekonzept, 1st Int Symp Green Biorefinery/Grüne Bioraffinerie, October 1997, Neuruppin, Germany. Proceedings, Berlin, ISBN: 3-929-67206-5

    Google Scholar 

  3. Narodoslawsky M (ed) (1999) Green Biorefinery 2nd Int Symp, October 13–14, 1999, Feldbach, Austria. Proceedings, SUSTAIN, Verein zur Koordination von Forschung über Nachhaltigkeit, Graz TU, Austria

    Google Scholar 

  4. Kamm B, Kamm M, Richter K, Linke B, Starke I, Narodoslawsky M, Schwenke KD, Kromus S, Filler G, Kuhnt M, Lange B, Lubahn U, Segert A, Zierke S (2000) Grüne BioRaffinerie Brandenburg—Beiträge zur Produkt- und Technologieentwicklung sowie Bewertung. Brandenburgische Umwelt Berichte, BUB 8,260-269, ISSN 1434-2375

    Google Scholar 

  5. US-President (1999) Developing and Promoting Biobased Products and Bioenergy. Executive Order 13101/13134, William J. Clinton, The White House, August 12, 1999 www.newuse.org/EG/EG-20/20BioText.html

    Google Scholar 

  6. US-Congress (2000) Biomass Research and Development, Act of 2000, June

    Google Scholar 

  7. Biomass R&D, Technical Advisory Committee (2002) Vision for Bioenergy & Biobased Products in the United States, Washington, DC www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf

    Google Scholar 

  8. Biomass R&D, Technical Advisory Committee (2002) Roadmap for Biomass Technologies in the United States, Washington, DC www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf

    Google Scholar 

  9. European Parliament and Council (2003) Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport. Official Journal of the European Union L123/42, 17.05.2003, Brussels

    Google Scholar 

  10. Gesetz für den Vorrang erneuerbarer Energien (2000) Erneuerbare Energiegesetz, EEG/EnWGuaÄndG, 29.03.2000, BGBI, 305

    Google Scholar 

  11. European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section (2005) www.suschem.org

    Google Scholar 

  12. US Department of Energy (DOE) (2005) 1st Int Biorefinery Workshop, July 20 and 21, Washington, DC, www.biorefineryworkshop.com

    Google Scholar 

  13. Zoebelin H (ed) (2001) Dictionary of Renewable Resources. Wiley, Weinheim

    Google Scholar 

  14. Morris DJ, Ahmed I (1992) The Carbohydrate Economy, Making Chemicals and Industrial Materials from Plant Matter. Institute of Local Self Reliance, Washington, DC

    Google Scholar 

  15. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity Engineering, Biotechnol Progr 15:777–793

    Article  CAS  Google Scholar 

  16. US Department of Agriculture (USDA) and US Department of Energy (DOE) (eds) (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. US Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN

    Google Scholar 

  17. Kamm B, Kamm M (2004) Principles of Biorefineries Mini-Review. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  Google Scholar 

  18. Kamm B, Kamm M, Gruber P (eds) (2006) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (ISBN: 3-527-31027-4)

    Google Scholar 

  19. Kamm B, Kamm M (2004) Biorefinery-Systems, Review. Chem Biochem Eng Q 18(1):1–6

    CAS  Google Scholar 

  20. Röper H (2001) Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitteilung der Fachgruppe Umweltchemie und Ökotoxikologie der Gesellschaft Deutscher Chemiker 7(2):6–12

    Google Scholar 

  21. Linko YY, Javanainen P (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme and Microbial Technol 19:118–123

    Article  CAS  Google Scholar 

  22. Zielinska KJ, Stecka KM, Miecznikowski AH, Suterska AM (2000) Degradation of raw potato starch by the amylases of lactic acid bacteria. Pr Inst Lab Badaw Przem Spozyw 55:22–29

    CAS  Google Scholar 

  23. Kamm B, Kamm M, Schmidt M, Starke I, Kleinpeter E (2006) Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)-quantification of glucose. Chemosphere 62:97–105, (DOI:10.1016/j.chemosphere.2005.03.073)

    Article  CAS  Google Scholar 

  24. EuropaBio (2003) White Biotechnology, Gateway to a more Sustainable Future. EuropaBio, Lyon, April

    Google Scholar 

  25. BIO Biotechnology Industry Organisation (2004) New Biotech Tools for a Cleaner Environment—Industrial Biotechnology for Pollution Prevention, Resource Conservation and Cost Reduction http://www.bio.org/ind/pubs/cleaner2004/cleanerReport.pdf

  26. DTI Global Watch Mission Report (2004) Impact of the industrial biotechnology on sutainability of the manufacturing base—the Japanese Perspective

    Google Scholar 

  27. Van Dyne DL (1999) Estimating the Economic Feasibility of Converting Ligno-Cellulosic Feedstocks to Ethanol and Higher Value Chemicals under the Refinery Concept: A Phase II Study, OR22072-58. University of Missouri

    Google Scholar 

  28. Van Dyne DL, Blasé MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janeck J (ed) Perspectives on New Crops and New Uses. ASHS Press, Alexandria, Va, pp 114–123

    Google Scholar 

  29. Werpy T, Petersen G (eds) (2004) Top Value Added Chemicals from Biomass. US Department of Energy, Office of Scientific and Technical Information, No.: DOE/GO-102004-1992 www.osti.gov/bridge

    Google Scholar 

  30. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

  31. Werpy T, Frye J, Holladay J (2006) Succinic acid—a model building block for chemical production from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 2, pp 367–379, ISBN: 3-527-31027-4)

    Google Scholar 

  32. Guettler MV, Jain MK, Rumler D (1996) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US patent 5573931 (Nov 12)

    Google Scholar 

  33. Berglund KA, Elankovan P, Glassner DA (1991) Carboxylic acid purification and crystallization process. US patent 5034105 (July 23)

    Google Scholar 

  34. Chang HN, Chang YK, Kwon SH, Lee WG, Lee PC, Yoo IK, Lim SJ (2003) Method for manufacturing organic acid by high efficiency continuous fermentation. US patent 6596521 (July 22)

    Google Scholar 

  35. Lee PC, Lee SY, Hong SH, Chang HN, Park SC (2003) Biotechnol Lett 25:111–114

    Article  CAS  Google Scholar 

  36. Frye JG, Zacher AH, Werpy TA, Wang Y (2005) Catalytic Preparation of Pyrrolidones from Renewable Resources. In: Sowa JR Jr (ed) Twentieth Conference on the Catalysis of Organic Reactions 2004. Hilton Head Island, S.C. Chemical Industries, CRC Press, Boca Raton, FL, 104:145–154

    CAS  Google Scholar 

  37. Daneel HJ, Faurie R (Amino GmbH) (1994) Verfahren zur Herstellung von l-Äpfel- säure aus Fumarsäure. DE Patent 4424664

    Google Scholar 

  38. Crosby J (1991) Synthesis of optically active compounds: a large scale perspective. Tetrahedron 47:4789–4846

    Article  CAS  Google Scholar 

  39. Guerin P, Vert M, Braud C, Lenz RW (1985) Optically active poly(β-malic acid). Polym Bull 14:187–192

    Article  CAS  Google Scholar 

  40. Leonard HR (1956) Levulinic acid as basic chemical raw material. J Ind Eng Chem 48:1331–1341 Leonard HR, US patent 2809203 (1958)

    Article  CAS  Google Scholar 

  41. NYSERDA (New York State Energy Research and Development Authority) (1998) Commerzialing Biomass Technologies in New York State. Producing a High Value Chemical from Biomass (Levulinic Acid). Project paper. Nyserda, Albany, New York (www.nyserda.org)

    Google Scholar 

  42. Richter K, Bertold C (1998) Biotechnological conversion of sugar and starchy crops into lactic acid. J Agr Eng Res 71(2):181–191

    Article  Google Scholar 

  43. Shamala TR, Sreekantiah KR (1987) Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic fermentation. Enzyme and Microbial Technol 9(12):726–729

    Article  CAS  Google Scholar 

  44. Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW (2005) Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technol 96(13):1492–1498

    Article  CAS  Google Scholar 

  45. Xiaodong W, Xuan G, Rakshit SK (1997) Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol Lett 19:841–843

    Article  CAS  Google Scholar 

  46. Akerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technol 75:119–126

    Article  CAS  Google Scholar 

  47. Kamm B, Kamm M, Richter K (1997) Entwicklung eines Verfahrens zur Konversion von hexosenhaltigen Rohstoffen zu biogenen Wirk- und Werkstoffen—Polylactid aus fermentiertem Roggenschrot über organische Aminiumlactate als alternative Kuppler biotechnischer und chemischer Stoffwandlungen. In: Chemie nachwachsender Rohstoffe. Tagungsband Wien, 9./10.09.1997. P.B. Czedik-Eysenberg/Österreichisches Bundesministerium für Umwelt (BMUJF) Wien, Österreich (pp 83–87, ISBN: 3-901-30571-8)

    Google Scholar 

  48. Nolasco-Hipolito C, Matsunaka T, Kobayashi G, Sonomoto K, Ishizaki A (2002) Synchronized fresh cell bioreactor system for continuous l-(+)-lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. J Biosci Bioeng 93(3):281–287

    Article  CAS  Google Scholar 

  49. Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crop Prod 11:129–137

    Article  Google Scholar 

  50. Thomsen MH, Bech D, Kiel P (2004) Manufacturing of Stabilised Brown Juice for l-lysine production—from University Lab Scale over Pilot Scale to Industrial Production. Chem Biochem Eng Q 18(1):37–46

    CAS  Google Scholar 

  51. Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresource Technol 78(2):149–153

    Article  CAS  Google Scholar 

  52. Grohmann K, Bothast RJ (1997) Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem 32(5):405–415

    Article  CAS  Google Scholar 

  53. Anurada R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem 35:367–375

    Article  Google Scholar 

  54. Miura S, Arimura T, Hoshino M, Kojima M, Dwiarty L, Okabe M (2003) Optimization and scale-up of l-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J Biosci Bioeng 96(1):65–69

    CAS  Google Scholar 

  55. Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of d-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4(11):1021–1027

    Article  CAS  Google Scholar 

  56. Melzoch K, Votruba J, Habova V, Rychtera M (1997) Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 56(1):25–31

    Article  CAS  Google Scholar 

  57. Moldes AB, Alonso JL, Parajo JC (1999) Cogeneration of cellobiose and glucose from pretreated wood and bioconversion to lactic acid, A kinetic study. J Biosci Bioeng 87(6):787–792

    Article  CAS  Google Scholar 

  58. Woiciechowski AL, Soccol CR, Ramos LP, Pandey A (1999) Experimental design to enhance the production of l-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochem 34(9):949–955

    Article  CAS  Google Scholar 

  59. Park EY, Anh PN, Okuda N (2004) Bioconversion of waste office paper to l(+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresource Technol 93(1):77–83

    Article  CAS  Google Scholar 

  60. Wee YJ, Yun JS, Park DH, Ryu HW (2004) Biotechnological production of l(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnol Lett 26(1):71–74

    Article  CAS  Google Scholar 

  61. Payot T, Chemaly Z, Fick M (1999) Lactic acid production by Bacillus coagulans–kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microb Tech 24(3–4):191–199

    Article  CAS  Google Scholar 

  62. Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73(1):25–34

    Article  CAS  Google Scholar 

  63. Bulut S, Elibol M, Ozer D (2004) Effect of different carbon sources on l(+)-lactic acid production by Rhizopus oryzae. Bio Chem Eng J 21:33–37

    CAS  Google Scholar 

  64. Bustos G, Moldes AB, Cruz JM, Dominguez JM (2004) Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J Agr Food Chem 52:801–808

    Article  CAS  Google Scholar 

  65. Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T (2004) Production of l-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl Microbiol Biotechnol 66(2):160–165

    Article  CAS  Google Scholar 

  66. Siebold M, Rindfleisch D, Schügerl K, Friedling P von Joppien R, Röper H (1995) Comparison of the Production of Lactic Acid by Three Different Lactobacilli and its Recovery by Extraction and Electrodialysis. Process Biochem 30(1):81–95

    Article  CAS  Google Scholar 

  67. von Friedling P, Schügerl K (1999) Recovery of lactic acid from aqueous model solutions and fermentation broths. Process Biochem 34(6–7):685–696

    Article  Google Scholar 

  68. Cao X, Yun HS, Koo YM (2002) Recovery of l(+)-lactic acid by anion exchange resin Amberlite IRA-400. Bio Chem Eng J 11:189–196

    CAS  Google Scholar 

  69. Bailly M (2002) Production of organic acids by bipolar electrodialysis, realizations and perspectives. Desalination 144:157–162

    Article  CAS  Google Scholar 

  70. Huang HJ, Yang ST, Ramey DE (2004) A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl Biochem Biotechnol 113–116:671–688

    Article  Google Scholar 

  71. Bouchoux A, de Balman HR, Lutin F (2005) Nanofiltration of glucose and sodium lactate solutions, Variations of retention between single- and mixed-solute solutions. J Membr Sci 258:123–132

    Article  CAS  Google Scholar 

  72. Gruber P (2001) Nature Works, New Products, Markets and Sustainability. Presentation, Industrial Investment Council, Berlin (19.12.2001)

    Google Scholar 

  73. Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231

    Article  CAS  Google Scholar 

  74. Kamm B, Kamm M, Richter K, Reimann W, Siebert A (2000) Formation of Aminium Lactates in Lactic Acid Fermentation, Fermentative production of 1,4-Piperazinium-(l,l)-dilactate and its use as starting material for the synthesis of dilactide (Part 2). Acta Biotech 20:289–304

    Article  CAS  Google Scholar 

  75. Kamm B, Kamm M, Richter K et al (1997) Verfahren zur Herstellung von organischen Aminiumlactaten und deren Verwendung zur Herstellung von Dilactid. Europäische Patentanmeldung EP 0 789 080 A2, Cl. C12P 7/56, (07.02.1997/13.08.1997)

    Google Scholar 

  76. Kamm B, Kamm M, Richter K (1997) Formation of aminium lactates in lactic acid fermentation, preparation and characterization of 1,4-piperazinium-(l,l)-dilactate obtained from l(+)-lactic acid (Part I). Acta Biotechn 17:3–18

    Article  CAS  Google Scholar 

  77. Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27

    CAS  Google Scholar 

  78. Kamm B (2004) Neue Ansätze in der Organischen Synthesechemie—Verknüpfung von biologischer und chemischer Stoffwandlung am Beispiel der Bioraffinerie-Grundprodukte Milchsäure und Carnitin. University of Potsdam, Germany

    Google Scholar 

  79. Gruber P, Henton DE, Starr J (2005) Polylactic acid from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (ISBN: 3-527-31027-4)

    Google Scholar 

  80. Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Application of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stabil 80:403–419

    Article  CAS  Google Scholar 

  81. Hovey A (2002) Cargill delivers $300M message with new plant. Lincoln Journal Star Lincoln, Nebrasca, 03.04.2002

    Google Scholar 

  82. Cargill-Dow to Up PLA Capacity to 450 000 t/y in 10 Yrs (2001) Japan Chemical Week, 11.10.2001

    Google Scholar 

  83. Richter K, Kose F, Kamm B, Kamm M (2001) Fermentative Production of Piperazinium Dilactate. Acta Biotechn 21:37–47

    Article  CAS  Google Scholar 

  84. Dale B (2002) Encyclopedia of Physical Science and Technology. 3rd edn, Volume 2:141–157

    Google Scholar 

  85. Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2006) In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 1, pp 253–294, ISBN: 3-527-31027-4)

    Google Scholar 

  86. Ringpfeil M (2001) Biobased Industrial Products and Biorefinery Systems—Industrielle Zukunft des 21. Jahrhunderts? (www.biopract.de)

    Google Scholar 

  87. Vorlop KD, Willke Th, Prüße U (2006) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 2, pp 385–406, ISBN: 3-527-31027-4)

    Google Scholar 

  88. Chem World (2003) 20 May, 20

    Google Scholar 

  89. DuPont (2004) http://www.dupont.com/sorona/home.html ; US patent 5686276

  90. Wurz O (1960) Zellstoff- und Papierherstellung aus Einjahrespflanzen. Eduard Roether Verlag, Darmstadt

    Google Scholar 

  91. Bozell JJ (2004) Alternative feedstocks for bioprocessing. In: Goodman RM (ed) Encyclopedia of Plant and Crop Science. Marcel Dekker, New York (0-8247-4268-0)

    Google Scholar 

  92. Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng/Biotechn 87:195–268

    CAS  Google Scholar 

  93. Nonato RV, Mantellato PE, Rossel CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. App Microbiol Biotechnol 57:1–5

    Article  CAS  Google Scholar 

  94. Rossel CEV, Mantellato PE, Agnelli AM (2006) Nascimento. J Sugar-based Biorefinery—Technology for an integrated production of Poly(3-hydroxybutyrate), Sugar and Ethanol. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 1, pp 209–226, ISBN: 3-527-31027-4)

    Google Scholar 

  95. Fiechter A (1990) Plastics from bacteria and for bacteria: Poly(ß-hydroxyalkanoates) as Natural, Biocompatible, and Biodegradable Polyesters. Springer, New York, pp 77–93

    Google Scholar 

  96. Rexen F (1986) New industrial application possibilities for straw. Documentation of Svebio Phytochemistry Group (Danish). Fytokemi i Norden, Stockholm, Sweden (1986-03-06, 12)

    Google Scholar 

  97. Coombs J, Hall K (1997) The potential of cereals as industrial raw materials: Legal, technical, commercial considerations. In: Campbell GM, Webb C, McKee SL (eds) Cereals—Novel Uses And Processes. Plenum, New York (1–12)

    Google Scholar 

  98. Audsley E, Sells JE (1997) Determining the profitability of a whole crop biorefinery. In: Campbell GM, Webb C, McKee SL (eds) Cereals—Novel Uses And Processes. Plenum, New York (191–294)

    Google Scholar 

  99. Hacking AJ (1986) The American wet milling industry. In: Economic Aspects of Biotechnology. Cambridge University Press, New York (214–221)

    Google Scholar 

  100. Willke Th, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66(2):131–142

    Article  CAS  Google Scholar 

  101. Carlsson R (1994) Sustainable primary production—Green crop fractionation: Effects of species, growth conditions, and physiological development. In: Pessarakli M (ed) Handbook of Plant and Crop Physiology. Marcel Dekker, New York, pp 941–963

    Google Scholar 

  102. Pirie NW (1971) Leaf Protein—Its Agronomy, Preparation, Quality, and Use. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  103. Pirie NW (1987) Leaf Protein and its By-Products in Human and Animal Nutrition. Cambridge University Press, Cambridge, UK

    Google Scholar 

  104. Carlsson R (1998) Status quo of the utilization of green biomass. In: Soyez S, Kamm B, Kamm M (eds) The Green Biorefinery, Proc 1th Int Green Biorefinery Conf, Neuruppin, Germany, 1997. Verlag GÖT, Berlin (ISBN: 3-929-67206-5)

    Google Scholar 

  105. Carlsson R (1983) Leaf protein concentrate from plant sources in temperate climates. In: Telek L, Graham HD (eds) Leaf Protein Concentrates. AVI Publ Co Inc, Westport, Conn, USA, pp 52–80

    Google Scholar 

  106. Telek L, Graham HD (eds) (1983) Leaf Protein Concentrates. AVI Publ Co Inc, Westport, Conn, USA

    Google Scholar 

  107. Wilkins RJ (ed) (1977) Green Crop Fractionation. The British Grassland Society, c/o Grassland Research Institute, Hurley, Maidenhead, SL6 5LR, UK

    Google Scholar 

  108. Tasaki I (ed) (1985) Recent Advances in Leaf Protein Research. Proc 2nd Int Leaf Protein Res Conf, Nagoya, Japan

    Google Scholar 

  109. Fantozzi P (ed) (1989) Proc 3rd Int Leaf Protein Res, Conf Pisa-Perugia-Viterbo, Italy

    Google Scholar 

  110. Singh N (ed) (1996) Green Vegetation Fractionation Technology. Science Publ Inc, Lebanon, NH 03767, USA

    Google Scholar 

  111. White DH, Wolf D (1988) In: Bridgewater AV, Kuester JL (eds) Research in Thermochemical Biomass Conversion. Elsevier Applied Science, New York

    Google Scholar 

  112. National Renewable Energy Laboratory (NREL) (2005) http://www.nrel.gov/biomass/biorefinery.htm

  113. Okkerse C, van Bekkum H (1999) From fossil to green. Green Chem 4:107–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kamm .

Editor information

Roland Ulber Dieter Sell

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamm, B., Kamm, M. (2007). Biorefineries – Multi Product Processes. In: Ulber, R., Sell, D. (eds) White Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2006_040

Download citation

Publish with us

Policies and ethics