Skip to main content

On Probable Prime Testing and the Computation of Square Roots mod n

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1838))

Abstract

We will investigate two well-known square root finding algorithms which return the roots of some quadratic residue modulo a prime p. Instead of running the mechanisms modulo p we will investigate their behaviour when applied modulo any integer n. In most cases the results will not be the square roots, when n is composite. Since the results obtained can easily be verified for correctness we obtain a very rapid probable prime test. Based on the square root finding mechanisms we will introduce two pseudoprimality tests which will be shown to be extremely fast and very efficient. Moreover, the proposed test for n ≡1 mod 4 will be proven to be even more efficient than Grantham’s suggestion in [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnault, F.: Rabin-Miller primality test: Composite numbers which pass it. Math. Comp. 64(209), 355–361 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baillie, R., Wagstaff Jr., S.: Lucas pseudoprimes. Math. Comp. 35, 1391–1417 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bleichenbacher, D.: Efficiency and Security of Cryptosystems based on Number Theory. Dissertation ETH Zürich (1996)

    Google Scholar 

  4. Carmichael, R.D.: On Sequences of Integers Defined by Recurrence Relations. Quart. J. Pure Appl. Math. 48, 343–372 (1920)

    Google Scholar 

  5. Grantham, J.: A Probable Prime Test with High Confidence. J. Number Theory 72, 32–47 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grantham, J.: Frobenius Pseudoprimes (1998) (preprint)

    Google Scholar 

  7. Jaeschke, G.: On strong pseudoprimes to several bases. Math. Comp. 61, 915–926 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koblitz, N.: A Course in Number Theory and Cryptography. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  9. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  10. Montgomery, P.: Evaluating recurrences of form Xm + n = f(Xm, Xn, Xm − n) via Lucas chains (preprint)

    Google Scholar 

  11. More, W.: The LD Probable Prime Test. In: Mullin, R.C., Mullen, G. (eds.) Contemporary Mathematics, vol. 225, pp. 185–191 (1999)

    Google Scholar 

  12. Müller, S.: On the Combined Fermat/Lucas Probable Prime Test. In: Walker, M. (ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 222–235. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Müller, W.B., Oswald, A.: In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 512–516. Springer, Heidelberg (1991)

    Google Scholar 

  14. Ribenboim, P.: The New Book of Prime Number Records. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  15. Somer, L.: Periodicity Properties of kth Order Linear Recurrences with Irreducible Characteristic Polynomial Over a Finite Field. In: Mullen, G.L., Shiue, P.J.S. (eds.) Finite Fields, Coding Theory and Advances in Communications and Computing, pp. 195–207. Marcel Dekker Inc., New York (1993)

    Google Scholar 

  16. Somer, L.: On Lucas d-Pseudoprimes. In: Bergum, G., Philippou, A., Horadam, A. (eds.) Applications of Fibonacci Numbers, vol. 7, pp. 369–375. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  17. Joye, M., Quisquater, J.J.: Efficient computation of full Lucas sequences. IEE Electronics Letters 32(6), 537–538 (1996)

    Article  Google Scholar 

  18. Williams, H.C.: Éduard Lucas and primality Testing. John Wiley & Sons, Chichester (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, S. (2000). On Probable Prime Testing and the Computation of Square Roots mod n . In: Bosma, W. (eds) Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722028_27

Download citation

  • DOI: https://doi.org/10.1007/10722028_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67695-9

  • Online ISBN: 978-3-540-44994-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics