Skip to main content

A Network of Fractal Force Chains and Their Effect in Granular Materials under Compression

  • Conference paper
Fractals in Engineering

Summary

Granular materials forming part of civil engineering structures such as rockfill dams and the granular base in pavement systems are subjected to large compressive stresses resulting from gravity and traffic loads respectively. As a result of these compressive stresses, the granular materials break into pieces of different sizes. The size distribution of the broken granular material has been found to be fractal in nature. However, there is no explanation to date about the mechanisms that cause the granular materials to develop a fractal size distribution. In the present study, a compression test designed to crush granular materials is presented. The tests used 5 mm glass beads and a plexiglass cylinder having an internal diameter equal to 5 cm. As a result of compression in the cylinder, the glass beads broke into pieces that had a fractal size distribution. The compression test was numerically simulated using the Discrete Element Method (DEM). The DEM simulation indicated that the particles developed a network of force chains in order to resist the compressive stress. These force chains did not have a uniform intensity but was found to vary widely through out the sample. Also, the distribution of the force chains in the sample did not involve all the grains but only a selective number of them. Thus, the force chains did not cover the whole sample. Using the box method, it was determined that the distribution of the force chains in the sample was fractal in nature. Also, the intensity of the force chains in the sample was found to be fractal in nature. Thus, the fractal nature of the intensity of the force chains and their distribution were found to be the main reason why granular material develop fractal fragments as a result of compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, K.L., and Farhoomand, J. (1967). “Compressibility and crushing of granular soils in anisotropic triaxial compression”. Canadian Geotechnical J., Vol. 4, No. 1, pp. 68–86.

    Article  Google Scholar 

  2. Lade, P.V., Yamamuro, J.A., and Bopp, P.A. (1996). “Significance of particle crushing in granular materials”. J. of Geotechnical Eng., ASCE, Vol. 122, No. 4, pp. 309–316.

    Article  Google Scholar 

  3. Coop, M.R. (1999). “The influence of particle breakage and state on the behavior of sand”. Proceedings of the Int. Worshop on Soil Crushability, Yamaguchi, Japan, pp. 19–57.

    Google Scholar 

  4. Bolton, M.D. (1999). “The role of micro-mechanics in soil mechanics”. Proceedings of the Int. Workshop on Soil Crushability, Yamaguchi, Japan, pp. 58–82.

    Google Scholar 

  5. Cundall, P.A., and Strack, O.D.L. (1979). “A discrete numerical model for granular Assemblies”. Geotechnique, Vol. 29, No. 1, pp. 47–65.

    Article  Google Scholar 

  6. Radjai, F. (1995). “Dynamique des Rotations et Frottement Collectif dans les Sys-temes Granulaires”. Ph.D. Thesis, Universite de Paris-Sud XI, Orsay.

    Google Scholar 

  7. Liu, C.H., Nagel, D., Shecter, D., Coppersmith, S.N., Majumdar, S., Narayan, O., and Witten, T.A. (1995). “Force fluctuations in bead packs”. Science, Vol. 269, pp. 513–515.

    Google Scholar 

  8. Coppersmith, S.N., Liu, C.H., Majumdar, S., Narayan, O., and Witten, T.A. (1996). “Model for force fluctiations in bead packs”. Physical Review E, Vol. 53, No. 5, pp. 4673–4685.

    Article  Google Scholar 

  9. Howell, D.W., Behringer, R.P. (1999). “Fluctuations in granular media”. Chaos, Vo. 9, No. 3, pp. 559–572.

    Article  MATH  Google Scholar 

  10. Cruz Hidalgo, R., Grosse, C.U., Kun, F., Reinhardt, H.W., and Herrmann, H.S. (2002). “Evolution of percolating force chains in compressed granular media”. Physical Review Letters, Vol. 89, No. 20, pp. 205501-1–205501-4.

    Google Scholar 

  11. McDowell, G.R., Bolton, M.D., and Robertson, D. (1996). “The fractal crushing of granular materials”. Int. J. of Mechanics and Physics of Solids, Vol. 44, No. 12, pp. 2079–2102.

    Article  Google Scholar 

  12. Tyler, S.W., and Wheatcraft, S.W. (1992). “Fractal scaling of soil particle-size distribution analysis and limitations”. Soil Science Society of America Journal, Vol. 56, No. 2, pp. 47–67.

    Article  Google Scholar 

  13. Hyslip, J.P., and Vallejo, L.E. (1997). “Fractal analysis of the roughness and size distribution of granular materials”. Engineering Geology, Vol. 48, No. 3–4, pp. 231–244.

    Article  Google Scholar 

  14. Itasca Consulting Group (2002). “Particle Flow Code in Two Dimensions, PFC2D”, Version 3.0. Minneapolis, Minnesota.

    Google Scholar 

  15. Watanabe, K., and Takahashi, H. (1995). “Fractal geometry characterization of geothermal reservoir fracture networks”. Journal of Geophysical Research, Vo. 100, No. B1, pp. 521–528.

    Article  Google Scholar 

  16. Acuna, J., and Yortsos, Y.C. (1997). “Application of fractal geometry to the study of networks of fractures and their pressure transient”. Water Resources Research, Vol. 31, No. 3, pp. 527–540.

    Article  Google Scholar 

  17. Strogatz, S. (2003). “Sinc: The Emerging Science of Spontaneous Order”. Theia-Hyperion Press, New York, pp.338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this paper

Cite this paper

Vallejo, L.E., Lobo-Guerrero, S., Chik, Z. (2005). A Network of Fractal Force Chains and Their Effect in Granular Materials under Compression. In: Lévy-Véhel, J., Lutton, E. (eds) Fractals in Engineering. Springer, London. https://doi.org/10.1007/1-84628-048-6_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-048-6_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-047-4

  • Online ISBN: 978-1-84628-048-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics