Skip to main content

MICRO-OPTICAL RESONATORS FOR MICROLASERS AND INTEGRATED OPTOELECTRONICS

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 216))

Abstract

Optical microcavities trap light in compact volumes by the mechanisms of almost total internal reflection or distributed Bragg reflection, enable light amplification, and select out specific (resonant) frequencies of light that can be emitted or coupled into optical guides, and lower the thresholds of lasing. Such resonators have radii from 1 to 100 μm and can be fabricated in a wide range of materials. Devices based on optical resonators are essential for cavity-quantum-electro-dynamic experiments, frequency stabilization, optical filtering and switching, light generation, biosensing, and nonlinear optics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Absil, P.P., Hryniewicz, J.V., Little, B.E., Cho, P.S., Wilson, R.A., Joneckis, L.G., Ho, P.-T., 2000, Wavelength conversion in GaAs micro-ring resonators, Opt. Lett. 25(8):554-556.

    ADS  Google Scholar 

  • Akahane, Y., Asano, T., Song, B.-S., and Noda, S., 2003, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature 425: 944-947.

    Article  ADS  Google Scholar 

  • Arakawa, Y., Yariv, A., 1986, Quantum-well lasers gain, spectra, dynamics, IEEE J. Quantum Electron. 22(9):1887-1899.

    Article  ADS  Google Scholar 

  • Arakawa, Y., 2002, Connecting the dots, SPIE's OE Magazine 1:18-20.

    Google Scholar 

  • Armani, D. K., Kippenberg, T. J., Spillane, S. M., and Vahala, K.J., 2003, Ultra-high-Q toroid microcavity on a chip, Nature 421:905-908.

    Article  ADS  Google Scholar 

  • Astratov, V.N., Franchak, J.P., and Ashili, S.P., 2004, Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder, Appl. Phys. Lett. 85(23):5508-5510.

    Article  ADS  Google Scholar 

  • Atkinson, K.E., 1997, The numerical solution of boundary integral equations, Cambridge University Press, Cambridge.

    Google Scholar 

  • Baba, T., 1997, Photonic crystals and microdisk cavities based on GaInAsP-InP system, IEEE J. Select. Topics Quantum Electron. 3(3):808-828.

    Article  Google Scholar 

  • Baba, T., Fujita, M., Sakai, A., Kihara, M., and Watanabe, R., 1997, Lasing characteristics of GaInAsP/InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm, IEEE Photon. Technol. Lett. 9(7):878-880.

    Article  ADS  Google Scholar 

  • Backes S.A. and Cleaver, J.R.A., 1998, Microdisk laser structures for mode control and directional emission, J. Vac. Sci. Technol. B 16(6):3817-3820.

    Article  Google Scholar 

  • Backes, S.A., Cleaver, J.R.A., Heberle, A.P., Baumberg, J.J., and KÖhler, K., 1999, Threshold reduction in pierced microdisk lasers, Appl. Phys. Lett. 74(2):176-178.

    Article  ADS  Google Scholar 

  • Barwicz, T., Popovic, M.A., Rakich, P.T., Watts, M.P. Haus, H.A., Ippen, E.P., and Smith, H.I, 2004, Microring-resonator-based add-drop filters in SiN: fabrication and analysis, Opt. Express, 12(7):1437-1442.

    Article  ADS  Google Scholar 

  • Benisty, H., Weisbuch, C., Labilloy, D., Rattier, M., Smith, C. J. M., Krauss, T. F., De La Rue, R.M., Houdre, R., Oesterle, U., Jouanin, C., and Cassagne D., 1999, Optical and confinement properties of two-dimensional photonic crystals, J. Lightwave Technol. 17(11):2063-2077.

    Article  ADS  Google Scholar 

  • Benyoucef, M., Ulrich, S.M., Michler, P., Wiersig, J., Jahnke, F., and Forchel, A., 2004, Enhanced correlated photon pair emission from a pillar microcavity, New J. Physics 6: 91.

    ADS  Google Scholar 

  • Berman, P.R. (ed.), 1994, Cavity Quantum Electrodynamics, Acad. Press, San Diego, CA.

    Google Scholar 

  • Bjork, G. and Yamamoto, Y., 1991, Analysis of semiconductor microcavity lasers using rate equations, IEEE J. Quantum. Electron., 27(11):2386-2396.

    Article  ADS  Google Scholar 

  • Blair, S. and Chen, Y., 2001, Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities, Appl. Opt. 40:570-582.

    ADS  Google Scholar 

  • Blom, F.C., vanDijk, D.R., Hoekstra, H.J.W.M., Driessen, A., and Popma, T.J.A., 1997, Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device, Appl. Phys. Lett. 71(6):747-749.

    Article  ADS  Google Scholar 

  • Boriskina, S.V., Nosich, A.I., 1999, Radiation and absorption losses of the whisperinggallery- mode dielectric resonators excited by a dielectric waveguide, IEEE Trans. Microwave Theory Tech. 47:224-231.

    ADS  Google Scholar 

  • Boriskina, S.V., Benson, T.M., Sewell, P., and Nosich, A.I., 2002, Effect of a layered environment on the complex natural frequencies of 2D WG-mode dielectric-ring resonators, J. Lightwave Technol. 20: 1563-1572.

    Article  ADS  Google Scholar 

  • Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I., 2003, Tuning of elliptic whisperinggallery- mode microdisk waveguide filters, J. Lightwave Technol. 21(9):1987-1995.

    Article  ADS  Google Scholar 

  • Boriskina, S.V., Benson, T.M., Sewell, P., and Nosich, A.I., 2003, Highly efficient design of spectrally engineered WG-mode laser resonators, Opt. Quantum Electron. 35:545-559.

    Article  Google Scholar 

  • Boriskina, S.V., Sewell, P. Benson, T.M., and Nosich A.I., 2004, Accurate simulation of 2D optical microcavities with uniquely solvable BIEs and trigonometric-Galerkin discretisation, J. Opt. Soc. Am. A 21(3):393-402.

    Article  ADS  Google Scholar 

  • Boriskina, S.V., Benson, T.M., Sewell, P., and Nosich, A.I., 2004, Spectral shift and Qchange of circular and square-shaped optical microcavity modes due to periodical sidewall surface roughness, J. Opt. Soc. Am. B, 10:1792-1796.

    ADS  Google Scholar 

  • Boriskina, S.V., Benson, T.M., Sewell, P., and Nosich, A.I., 2005, Optical modes in imperfect 2-D square and triangular microcavities, IEEE J. Quantum Electron., 41(6):857-862.

    Article  ADS  Google Scholar 

  • Boriskina, S.V., 2005, Efficient simulation and design of coupled optical resonator clusters and waveguides, Proc. ICTON Int. Conf., Barcelona, Spain.

    Google Scholar 

  • Boriskina, S.V., 2005, Symmetry, degeneracy and optical confinement of modes in coupled microdisk resonators and photonic crystal cavities, submitted to J. Quantum Electron.

    Google Scholar 

  • Boriskina, S.V., Benson, T.M., Sewell, P., and Nosich, A.I., 2006, Q-factor and emission pattern control of the WG modes in notched microdisk resonators, to appear in IEEE J. Select. Topics Quantum. Electron.

    Google Scholar 

  • Boroditsky, M., Vrijen, R., Krauss, T.F., Coccioli, R., Bhat, R., and Yablonovitch, E., 1999, Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals, J. Lightwave Technol. 17(11):2096-2112.

    Article  ADS  Google Scholar 

  • Boyd, R.W. and Heebner, J.E., 2001, Sensitive disk resonator photonic biosensor, Appl. Opt. 40(31):5742-5747.

    ADS  Google Scholar 

  • Braginsky, V. B., Gorodetsky, M. L., and Ilchenko, V. S., 1989, Quality-factor and nonlinear properties of optical whispering-gallery modes, Phys. Lett. A 137(7-8):393-397.

    Article  ADS  Google Scholar 

  • Buck, J.R. and Kimble, H.J., 2003, Optimal sizes of dielectric microspheres for cavity QED with strong coupling, Phys. Rev. A 67(3):033806.

    Article  ADS  Google Scholar 

  • Cai, M., Painter, O., and Vahala, K.J., 2000, Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system, Phys. Rev .Lett. 85(1):74-77.

    Article  ADS  Google Scholar 

  • Cai, M., Painter, O., Vahala, K.J., and Sercel, P.C., 2000, Fiber-coupled microsphere laser, Opt. Lett. 25(19):1430-1432.

    ADS  Google Scholar 

  • Campillo, A.J., Eversole, J.D., and Lin, H.-B., 1991, Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets, Phys. Rev. Lett. 67(4):437-440.

    Article  ADS  Google Scholar 

  • Cao, H., Xu, J.Y., Xiang, W.H., Ma, Y., Chang, S.-H., Ho, S.T., and Solomon, G.S., 2000, Optically pumped InAs quantum dot microdisk lasers, Appl. Phys. Lett. 76(24):3519-3521.

    ADS  Google Scholar 

  • Cao, J.R., Kuang, W., Choi, S.-J., Lee, P.-T., O' Brien, J.D., Dapkus, P.D., 2003, Threshold dependence on the spectral alignment between the quantum-well gain peak and the cavity resonance in InGaAsP photonic crystal lasers, Appl. Phys. Lett. 83(20):4107-4109.

    Article  ADS  Google Scholar 

  • Chan, S., Horner, S.R., Fauchet, P. M., and Miller, B.L., 2001, Identification of gram negative bacteria using nanoscale silicon microcavities, J. Am. Chem. Soc., 123(47):11797-11798.

    Article  Google Scholar 

  • Chang, R.K. and Campillo, A.J. (eds.), 1996, Optical processes in microcavities, World Scientific, Singapore.

    Google Scholar 

  • Chao, C.-Y. and Guo, L.J., 2003, Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Appl. Phys. Lett. 83(8):1527-1529.

    Article  ADS  Google Scholar 

  • Chern, G.D., Tureci, H.E., Stone, A.D., Chang, R.K., Kneissl M., and Johnson, N.M., 2003, Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars, Appl. Phys. Lett. 83(9):1710-1712.

    Article  ADS  Google Scholar 

  • Chin M.K. and Ho, S.T., 1998, Design and modeling of waveguide-coupled single-mode microring resonators, J. Lightwave Technol. 16(8):1433-1446.

    Article  ADS  Google Scholar 

  • Chin, M.K., Chu, D.Y., and Ho, S.-T., 1994, Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering-gallery modes, J. Appl. Phys. 75(7):3302-3307.

    Article  ADS  Google Scholar 

  • Chin, M.K., Youtsey, C., Zhao, W., Pierson, T., Ren, Z., Wu, S.L., Wang, L., Zhao, Y.G., and Ho, S.T., 1999, GaAs microcavity channel-dropping filter based on a race-track resonator, IEEE Photon. Technol. Lett. 11(12):1620-1622.

    Article  ADS  Google Scholar 

  • Choi, S.J., Peng, Z., Yang, Q., Choi, S.J., and Dapkus, P.D., 2004, An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators, IEEE Photon. Technol. Lett. 16(11):2517-2519.

    Article  ADS  Google Scholar 

  • Chou, S.Y., Krauss, P.R., and Renstrom, P.J., 1996, Nanoimprint lithography, J. Vac. Sci. Technol. B 14(6):4129-4133.

    Article  Google Scholar 

  • Chow, E., Lin, S.Y., Johnson, S.G., Villeneuve, P.R., Joannopoulos, J.D., Wendt, J.R., Vawter, G.A., Zubrzycki, W., Hou, H., and Alleman, A., 2000, Three-dimensional control of light in a two-dimensional photonic crystal slab, Nature 407:983-986.

    ADS  Google Scholar 

  • Chowdhury, D.Q., Barber, P.W., and Hill, S.C., 1992, Energy-density distribution inside large nonabsorbing spheres by using Mie theory and geometrical-optics, Appl. Opt. 31(18):3518-3523.

    Article  ADS  Google Scholar 

  • Chremmos, I.D., Uzunoglu, N.K., 2004, Transmission and radiation in a slab waveguide coupled to a whispering-gallery resonator: volume-integral-equation analysis, J. Opt. Soc. Am. A 21(5):839-846.

    Article  ADS  Google Scholar 

  • Chu, D.Y., Chin, M.K., Bi, W.G., Hou, H.Q., Tu, C.W., and S.T. Ho, 1994, Double-disk structure for output coupling in microdisk lasers, Appl. Phys. Lett. 65(25):3167-3169.

    Article  ADS  Google Scholar 

  • Chu, S.T. and Chaudhuri, S.K., 1989, A finite-difference time domain method for the design and analysis of guided-wave optical structures, J. Lightwave Technol. 7:2033-2038.

    ADS  Google Scholar 

  • Coccioli, R., Boroditsky, M., Kim, K.W., Rahmat-Samii, Y., and Yablonovitch, E., 1998, Smallest possible electromagnetic mode volume in a dielectric cavity, IEE Proc. -Optoelectron. 145(6):391-397.

    Article  Google Scholar 

  • Djordjev, K., Choi, S.J., Choi, S.J., and Dapkus P.D., Active semiconductor microdisk devices, J. Lightwave Technol. 20(1):105-113.

    Google Scholar 

  • Djordjev, K., Choi, S.J., Choi, S.J., and Dapkus, P.D., 2002, High-Q vertically coupled InP microdisk resonators, IEEE Photon. Technol. Lett. 14(3):331-333.

    Article  ADS  Google Scholar 

  • Dumon, P., Bogaerts, W., Wiaux, V., Wouters, J., Beckx, S., Van Campenhout, J., Taillaert, D., Luyssaert, B., Bienstman, P., Van Thourhout, D., and Baets, R., 2004, Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography, IEEE Photon. Technol. Lett. 16(5):1328-1330.

    Article  ADS  Google Scholar 

  • Einspruch, N.G. and Frensley, W.R. (eds), 1994, Heterostructure and Quantum Devices, in series VLSI Electronics: Microstructure Science (Academic Press, San Diego).

    Google Scholar 

  • Eldada, L. and Shacklette, L.W., 2000, Advances in polymer integrated optics, IEEE J. Select. Topics Quantum Electron. 6(1):54-68.

    Article  Google Scholar 

  • Eldada, L., 2001, Advances in telecom and datacom optical components, Opt. Eng. 40(7):1165-1178.

    Article  ADS  Google Scholar 

  • Elliott, D., 1989, Integrated circuit fabrication technology, McGraw-Hill, New York.

    Google Scholar 

  • Fong, C.Y. and Poon, A.W., 2003, Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities, Opt. Express 11(22):2897-2904.

    Article  ADS  Google Scholar 

  • Fong, C.Y. and Poon, A.W., 2004, Planar corner-cut square microcavities: ray optics and FDTD analysis, Opt. Express 12(20):4864-4874.

    Article  ADS  Google Scholar 

  • Foord, J.S., 1997, Chemical beam epitaxy and related techniques, John Wiley & Son Ltd.

    Google Scholar 

  • Foresi, J.S., Villeneuve, P.R., Ferrera, J., Thoen, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimerling, L.C., Smith, H.I., and Ippen, E.P., 1997, Photonic-bandgap microcavities in optical waveguides Nature 390:143-145.

    ADS  Google Scholar 

  • Fujii, M., Freude, W., and Russer, P., 2003, Efficient high-spatial-order FDTD analysis of 3D optical ring resonator filters, Proc. 19th Annual Rev. Progress in Appl. Comput. Electromagnetics, 739-744, Monterey, CA.

    Google Scholar 

  • Fujita, M., Sakai, A., and Baba, T., 1999, Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor, J. Select. Topics Quant. Electron. 5(3):673-681.

    Google Scholar 

  • Fujita, M. and Baba, T., 2001, Proposal and finite-difference time-domain simulation of WG mode microgear cavity, IEEE J. Quantum Electron. 37(10):1253-1258.

    Article  ADS  Google Scholar 

  • Fujita, M. and Baba, T., 2002, Microgear laser, Appl. Phys. Lett. 80(12):2051-2053.

    Article  ADS  Google Scholar 

  • Fukushima T. and Harayama, T., 2004, Stadium and quasi-stadium laser diodes, IEEE J. Select. Topics Quantum Electron. 10(5):1039-1051.

    Article  Google Scholar 

  • Gardner, D.S., and Brongersma, M.L., 2005, Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology, Opt. Materials 27(5):804-811.

    Article  ADS  Google Scholar 

  • Gastine, M., Courtois, L., and Dormann, J.L., 1967, Electromagnetic resonances of free dielectric spheres, IEEE Trans. Microwave Theory Tech. 15(12):694-700.

    ADS  Google Scholar 

  • Gayral, B., Gerard, J.M., Legrand, B., Costard E., and Thierry-Mieg V., 1998, Optical study of GaAs/ AlAs pillar microcavities with elliptical cross section, Appl. Phys. Lett. 72(12):1998, 1421-1423.

    Article  ADS  Google Scholar 

  • Gayral, B., Gerard, J.M., Lemaitre, A., Dupuis, C., Manin, L., and Pelouard, J.L., 1999, High-Q wet-etched GaAs microdisks containing InAs quantum boxes, Appl. Phys. Lett. 75(13):1908-1910.

    Article  ADS  Google Scholar 

  • Gianordoli, S., Hvozdara, L., Strasser, G., Schrenk, W., Faist, J., and Gornik, E., 2000, Longwavelength (λ= 10 μm) quadrupolar-shaped GaAs-AlGaAs microlasers, IEEE J. Quantum. Electron. 36(4):458-464.

    Article  ADS  Google Scholar 

  • Glisson, A.W., Kajfez, D., and James, J., 1983, Evaluation of modes in dielectric resonators using a surface integral-equation formulation, IEEE Trans. Microwave Theory Tech. 31(12):1023-1029.

    ADS  Google Scholar 

  • Gmachl, C., Cappasso, F., Narimanov, E.E., Nockel, J.U., Stone, A.D., Faist, J., Sivco, D.L., and Cho, A.Y., 1998, High-power directional emission from microlasers with chaotic resonances, Science 280:1556-1564.

    Article  ADS  Google Scholar 

  • Gorodetsky, M.L., Savchenkov, A.A., and Ilchenko, V.S., 1996, Ultimate Q of optical microsphere resonators, Opt. Lett. 21(7):453-455.

    ADS  Google Scholar 

  • Greedy, S.C., Boriskina, S.V., Sewell, P., Benson, T.M., 2001, Design and simulation tools for optical micro-resonators, Proc. Photonics West Conference, San Jose, CA.

    Google Scholar 

  • Grover, R., Absil, P.P., Van, V., Hryniewicz, J.V., Little, B.E., King, O., Calhoun, L.C., Johnson, F.G., and Ho, P.-T., 2001, Vertically coupled GaInAsP-InP microring resonators, Opt. Lett. 26(8):506-508.

    ADS  Google Scholar 

  • Grover, R., Van, V., Ibrahim, T.A., Absil, P.P., Calhoun, L.C., Johnson, F. G., Hryniewicz, J.V., and Ho, P.-T., 2002, Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters, J. Lightwave Technol. 20(5):872-877.

    Article  ADS  Google Scholar 

  • Grover, R., Ibrahim, T.A., Kanakaraju, S., Lucas, L., Calhoun, L.C., and Ho, P.-T., 2004, A tunable GaInAsP-InP optical microring notch filter, IEEE Photon. Technol. Lett. 16(2):467-469.

    Article  ADS  Google Scholar 

  • Guo, L.J., 2004, Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys. 37:R123-R141.

    Article  ADS  Google Scholar 

  • Guo, W.-H., Huang, Y.-Z., Lu, Q.-Y., and Yu, L.-J., 2003, Whispering-gallery-like modes in square resonators, IEEE J. Quantum Electron. 39(9):1563-1566.

    ADS  Google Scholar 

  • Hagness, S.C., Rafizadeh, D., Ho, S.T., and Taflove, A., 1997, FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators, J. Lightwave Technol. 15(11):2154-2165.

    Article  ADS  Google Scholar 

  • Hammer M., 2002, Resonant coupling of dielectric optical waveguides via rectangular microcavities: the coupled guided mode perspective, Opt.Communicat. 214(1-6):155-170.

    MathSciNet  ADS  Google Scholar 

  • Haroche, S., Kleppner, D., 1989, Cavity quantum electrodynamics, Phys. Today 42(1):24-30.

    ADS  Google Scholar 

  • Harrington, R.F., 1968, Field computation by Moment Methods (Krieger, Malabar, Fla.).

    Google Scholar 

  • Heebner, J.E., Lepeshkin, N.N., Schweinsberg, A., Wicks, G.W., Boyd, R.W., Grover, R., and Ho P.-T., 2004, Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators, Opt. Lett. 29(7):769-771.

    Article  ADS  Google Scholar 

  • Hennessy, K., Reese, C., Badolato, A., Wang, C.F., Imamoglu, A., Petroff, P.M., Hu, E., Jin, G., Shi, S., and Prather, D.W., 2003, Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots, Appl. Phys. Lett. 83(18):3650-3652.

    Article  ADS  Google Scholar 

  • Herman, M.A. and Sitter, H., 1996, Molecular beam epitaxy, Springer-Verlag, Berlin.

    Google Scholar 

  • Hillmer, H. and Germann, R. (eds), 2003, Photonic Materials for Optical Communications, MRS Bulletin 5:340-377.

    Google Scholar 

  • Hryniewicz, J.V., Absil, P.P., Little, B.E., Wilson, R.A., Ho, P.-T., 2000, Higher order filter response in coupled microring resonators, IEEE Photon. Technol. Lett. 12(3):320-322.

    Article  ADS  Google Scholar 

  • Huang, Y.-Z., Guo, W.-H., and Wang, Q.-M., 2001, Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle microresonator, IEEE J. Quantum Electron. 37(1):100-107.

    ADS  Google Scholar 

  • Ilchenko, V.S., Gorodetsky, M.L., Yao, X.S., and Maleki, L., 2001, Microtorus: a highfinesse microcavity with whispering-gallery modes, Opt. Lett. 26(5):256-258.

    ADS  Google Scholar 

  • Ilchenko, V.S., Matsko, A.B., Savchenkov, A.A., Maleki, L., 2002, High-efficiency microwave and millimeter-wave electrooptical modulation with whispering-gallery resonators, Proc. SPIE 4629:158-163.

    ADS  Google Scholar 

  • Jiang, H.X., Lin, J.Y., Zeng, K.C., and Yang, W.D., 1999, Optical resonance modes in GaN pyramid microcavities, Appl. Phys. Lett. 75(6):763-765.

    Article  ADS  Google Scholar 

  • Jones, D.S., 1964, The Theory of Electromagnetics, Macmillan, New York.

    Google Scholar 

  • Kim, S.-H., Ryu, H.-Y., Park, H.-G., Kim, G.-H., Choi, Y.-S., and Lee, Y.-H., 2002, Two dimensional photonic crystal hexagonal waveguide ring laser, Appl. Phys. Lett. 81(14):2499-2501.

    Article  ADS  Google Scholar 

  • Kim, S.-K., Kim, S.-H., Kim, G.-H., Park, H.-G., Shin, D.-J., and Lee, Y.-H., 2004, Highly directional emission from few-micron-size elliptical microdisks, Appl. Phys. Lett. 84(6): 861-863.

    ADS  Google Scholar 

  • Kippenberg, T.J., Spillane, S.M., Armani, D.K., and Vahala, K. J., 2003, Fabrication and coupling to planar high-Q silica disk microcavities, Appl. Phys. Lett. 83(4):797-799.

    Article  ADS  Google Scholar 

  • Kippenberg, T.J., Spillane, S.M., Armani, D.K., and Vahala K.J., 2004, Ultralow-threshold microcavity Raman laser on a microelectronic chip, Opt. Lett. 29(11):1224-1226.

    Article  ADS  Google Scholar 

  • Klunder, D.J.W., Krioukov, E., Tan, F.S., Van Der Veen, T., Bulthuis, H.F., Sengo, G., Otto, C., Hoekstra, H.J.W.M., Driessen, A., 2001, Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology, Appl. Phys. B, 73(5-6):603-608.

    ADS  Google Scholar 

  • Kneissl, M., Teepe, M., Miyashita, N., Johnson, N.M., Chern, G.D., and Chang, R.K., 2004, Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission, Appl. Phys. Lett. 84(14):2485-2487.

    Article  ADS  Google Scholar 

  • Kottmann, J.P. and Martin, O.J.F., 2000, Accurate solution of the volume integral equation for high-permittivity scatterers, IEEE Trans. Antennas Propagat. 48(11):1719-1726.

    Article  ADS  Google Scholar 

  • Krauss, T.F. and De La Rue, R.M., 1999, Photonic crystals in the optical regime - past, present and future, Progress in Quantum Electronics 23:51-96.

    Article  ADS  Google Scholar 

  • Krioukov, E., Klunder, D.J.W., Driessen, A., Greve, J., and Otto, C., 2002, Sensor based on an integrated optical microcavity, Opt. Lett. 27:512-514.

    ADS  Google Scholar 

  • Kucharski, A.A., 2000, Resonances in heterogeneous dielectric bodies with rotational symmetry-volume integral-equation formulation, IEEE Trans. Microwave Theory Tech. 48(5):766-770.

    MathSciNet  ADS  Google Scholar 

  • Laine, J.-P., Tapalian, H.C., Little, B.E., and Haus, H.A., 2001, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting, Sensors and Actuators A 93:1-7.

    Article  Google Scholar 

  • Lee, S.Y., Kurdoglyan, M.S., Rim, S., and Kim C.M., 2004, Resonance patterns in a stadiumshaped microcavity, Phys. Rev. A 70(2):id.023809.

    Google Scholar 

  • Lee, S.-B., Lee J.-H., Chang, J.-S., Moon, H.-J., Kim, S.W., and K. An, 2002, Observation of scarred modes in asymmetrically deformed microcylinder lasers, Phys. Rev. Lett., 88(3):033903.

    Article  ADS  Google Scholar 

  • Lefevre-Seguin, V., and Haroche, S., 1997, Towards cavity-QED experiments with silica microspheres, Mater. Sci. Eng. B 48:53-58.

    Google Scholar 

  • Levi, A.F.J., McCall, S.L., Pearton, S.J., and Logan, R.A., 1993, Room temperature operation of submicrometer radius disc laser, Electron. Lett. 29:1666-1667.

    Google Scholar 

  • Levi, A.F.J., Slusher, R.E., McCall, S.L., Glass, J.L., Pearton, S.J., and Logan, R.A., 1993, Directional light coupling from microdisk lasers, Appl. Phys. Lett. 62:561-563.

    ADS  Google Scholar 

  • Liang, W., Xu, Y., Huang, Y., Yariv, A., Fleming, J. G., and Lin, S.-Y., 2004, Mie scattering analysis of spherical Bragg “onion” resonators, Opt. Express, 12(4):657-669.

    Article  ADS  Google Scholar 

  • Ling, T., Liu, L., Song, Q., Xu, L., and Wang, W., 2003, Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity, Opt. Lett. 28(19):1784-1786.

    ADS  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., and Laine, J.-P., 1997, Microring resonator channel dropping filters, J. Lightwave Technol. 15:998-1005.

    ADS  Google Scholar 

  • Little, B.E., Chu, S.T., Pan, W., Ripin, D., Kaneko, T., Kokubun, Y., and Ippen, E., 1999, Vertically coupled glass microring resonator channel dropping filters, IEEE Photon. Technol. Lett. 11(2):215-217.

    Article  ADS  Google Scholar 

  • Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C., Greene, W., 1998, Ultra-compact Si-SiO2 microring resonator optical channel dropping filters, Photon. Technol. Lett. 10:549-551.

    ADS  Google Scholar 

  • Little, B.E., Haus, H.A., Foresi, J.S., Kimerling, L.C., Ippen, E.P., and Ripin, D.J., 1998, Wavelength switching and routing using absorption and resonance, IEEE Photon. Technol. Lett. 10(6):816-818.

    Article  ADS  Google Scholar 

  • Liu, Y., Safavi-Naeini, S., Chaudhuri, S.K., and Sabry, R., 2004, On the determination of resonant modes of dielectric objects using surface integral equations, IEEE Trans. Antennas Propagat. 52(4): 1062-1069.

    Article  ADS  Google Scholar 

  • Mabuchi, H. and Doherty, A.C., 2002, Cavity quantum electrodynamics: coherence in context, Science 298:1372-1377.

    Article  ADS  Google Scholar 

  • Manolatou, C., Khan, M. J., Fan, S., Villeneuve, P. R., Haus, H. A., and Joannopoulos, J. D., 1999, Coupling of modes analysis of resonant channel add-drop filters, IEEE J. Quantum Electron. 35:1322-1331.

    Article  ADS  Google Scholar 

  • Melloni, A., Costa, R., Monguzzi, P., and Martinelli, M., 2003, Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems, Opt. Lett. 28(17):1567-1569.

    ADS  Google Scholar 

  • Melloni, A., Morichetti, F., and Martinelli, M., 2003, Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures, Opt. Quantum Electron. 35:365-379.

    Article  Google Scholar 

  • Mookherjea, S., 2004, Semiconductor coupled-resonator optical waveguide laser, Appl. Phys. Lett. 84(17):3265-3267.

    Article  ADS  Google Scholar 

  • Noda, S., Chutinan, A., and Imada. M., 2000, Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407:608-610.

    Article  ADS  Google Scholar 

  • Noeckel, J.U., Stone, A.D., and Chang, R.K., 1994, Q spoiling and directionality in deformed ring cavities, Opt. Lett., 19:1693-1695.

    ADS  Google Scholar 

  • Noeckel, J.U., 2000, Mode structure and ray dynamics of a parabolic dome microcavity, Phys. Rev. E 62:8677.

    ADS  Google Scholar 

  • Nosich, A.I., 1999, The Method of Analytical Regularization in wave-scattering and eigenvalue problems: foundations and review of solutions, IEEE Antennas Propagat. Mag. 41:34-49 (1999).

    Article  ADS  Google Scholar 

  • Olivier, S., Smith, C., Rattier, M., Benisty, H., Weisbuch, C., Krauss, T., Houdre, R.,and Oesterl, U., 2001, Miniband transmission in a photonic crystal coupled-resonator optical waveguide, Opt. Lett. 26(13):1019-1021.

    ADS  Google Scholar 

  • Painter O., Srinivasan, K., O' Brien, J.D., Scherer, A., and Dapkus, P.D., 2001, Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides, J. Opt. A: Pure Appl. Opt. 3:S161-S170.

    Article  ADS  Google Scholar 

  • Painter, O., Lee, R.K., Scherer, A., Yariv, A., O'Brien, J.D., Dapkus, P.D., and Kim, I., 1999, Two-dimensional photonic band-gap defect mode laser, Science 284:1819-1821.

    Article  Google Scholar 

  • Painter, O.J., Husain, A., Scherer, A., O'Brien, J.D., Kim, I., and Dapkus, P.D., 1999, Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP, J. Lightwave Technol. 17(11):2082-2088.

    Article  ADS  Google Scholar 

  • Pan, Y.-L. and Chang, R.K., 2003, Highly efficient prism coupling to whispering gallery modes of a square µ cavity, Appl. Phys. Lett. 82(4):487-489.

    Article  ADS  Google Scholar 

  • Pelton, M., Vuckovic, J., Solomon, G.S., Scherer, A., and Yamamoto, Y., 2002, Threedimensionally confined modes in micropost microcavities: quality factors and Purcell factors, IEEE J. Quantum. Electron. 38(2):170-177.

    Article  ADS  Google Scholar 

  • Polman, A., Min, B., Kalkman, J., Kippenberg, T.J., Vahala, K.J., 2004, Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett. 84(7): 1037-1039.

    Article  ADS  Google Scholar 

  • Poon, J.K.S., Scheuer, J., Mookherjea, S., Paloczi, G.T., Huang, Y., and Yariv, A., 2004, Matrix analysis of microring coupled-resonator optical waveguides, Opt. Express 12(1):90-103.

    Article  ADS  Google Scholar 

  • Poon, W., Courvoisier, F., and Chang, R.K., 2001, Multimode resonances in square-shaped optical microcavities, Opt. Lett. 26:632-634.

    ADS  Google Scholar 

  • Poulsen, M.R., Borel, P.I., Fage-Pedersen, J., Hubner, J., Kristensen, M., Povlsen, J.H., Rottwitt, K., Svalgaard, M., and Svendsen, W., 2003, Advances in silica-based integrated optics, Opt. Eng. 42(10):2821-2834.

    Article  ADS  Google Scholar 

  • Purcell, E.M., 1946, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69:681.

    Article  Google Scholar 

  • Rabiei, P., and Steier, W.H., 2003, Tunable polymer double micro-ring filters, IEEE Photon. Technol. Lett. 15(9):1968-1975.

    Article  Google Scholar 

  • Rabiei, P., Steier, W. H., Zhang, C., and Dalton, L. R., 2002, Polymer micro-ring filters and modulators. J.Lightwave Technol. 20:1968-1975.

    Article  ADS  Google Scholar 

  • Rakovich, Y.P. Yang, L., McCabe, E.M., Donegan, J.F., Perova, T., Moore, A., Gaponik, N., and Rogach, A., 2003, Whispering gallery mode emission from a composite system of CdTe nanocrystals and a spherical microcavity, Semicond. Sci. Technol. 18:914-918.

    Article  ADS  Google Scholar 

  • Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., and Forchel, A., 2004, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature 432:197-200.

    Article  ADS  Google Scholar 

  • Rosenblit, M., Horak, P., Helsby, S., and Folman, R., 2004, Single-atom detection using whispering gallery modes of microdisk resonators, Phys. Rev. A, 70(5):053808.

    Article  ADS  Google Scholar 

  • Rowland, D.R. and Love, J.D., 1993, Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc.Pt.J 140(3):177-188.

    Google Scholar 

  • Russell, P.S.J., Atkin, D.M., and Birks, T.A., 1996, Microcavities and Photonic Bandgaps (Dordrecht: Kluwer) 203-218.

    Google Scholar 

  • Ryu, H.-Y., Notomi, M., Kim, G.-H. and Lee, Y.-H., 2004, High quality-factor whispering-gallery-mode in the photonic crystal hexagonal disk cavity, Opt. Express 12(8):1708-1719.

    Article  ADS  Google Scholar 

  • Sandoghdar V., Treussart, F., Hare, J., Lefèvre-Seguin, V., Raimond, J. -M., and Haroche, S., 1996, Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 54:R1777-R1780.

    Article  ADS  Google Scholar 

  • Santori, C., Fattal, D., Vuckovic, J., Solomon, G.S., and Yamamoto Y., 2004, Single-photon generation with InAs quantum dots, New J. Physics 6:89-105.

    ADS  Google Scholar 

  • Savchenkov, A.A., Ilchenko, V.S., Handley, T., and Maleki, L., 2003, Second-order filter response with series-coupled silica microresonators, IEEE Photon. Technol. Lett. 15(4):543-544.

    Article  ADS  Google Scholar 

  • Savchenkov A.A., Ilchenko V.S., Matsko A.B., and Maleki L., 2004, “KiloHertz optical resonances in dielectric crystal cavities,” Phys. Rev. A, 70, 051804.

    Article  ADS  Google Scholar 

  • Savchenkov, A.A., Ilchenko, V.S., Matsko, A.B., and Maleki, L., 2005, High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators, IEEE Photon. Technol. Lett. 17(1):136-138.

    Article  ADS  Google Scholar 

  • Serpenguzel, A., Arnold, S., and Griffel, G., 1995, Excitation of resonances of microspheres on an optical fiber, Opt. Lett. 20:654-656.

    Article  ADS  Google Scholar 

  • Scheuer, J., Green, W.M.J., DeRose, G.A., and Yariv, A., 2005, InGaAsP annular Bragg lasers: theory, applications, and modal properties, IEEE J. Select. Topics Quantum Electron., 11(2):476-484.

    Article  Google Scholar 

  • Shima, K., Omori, R., and Suzuki, A., 2001, High- Q concentrated directional emission from egg-shaped asymmetric resonant cavities, Opt. Lett. 26(11):795-797.

    ADS  Google Scholar 

  • Shopova, S.I., Farca, G., Rosenberger, A.T., Wickramanayake, W.M.S., and Kotov, N.A., 2004, Microsphere whispering-gallery-mode laser using HgTe quantum dots, Appl. Phys. Lett. 85(25): 6101-6103.

    Article  ADS  Google Scholar 

  • Smotrova, E.I. and Nosich, A.I., 2004, Mathematical analysis of the lasing eigenvalue problem for the WG modes in a 2-D circular dielectric microcavity, Opt. Quantum Electron. 36(1-3):213-221.

    Article  Google Scholar 

  • Solomon, G.S., Pelton, M., and Yamamoto, Y., 2001, Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity, Phys. Rev. Lett. 86(17):3903-3906.

    Article  ADS  Google Scholar 

  • Spillane, S.M., Kippenberg, T.J., and Vahala, K. J., 2002, Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature 415(6872):621-623.

    Article  ADS  Google Scholar 

  • Srinivasan, K., Barclay, P.E., Painter, O., 2004, Fabrication-tolerant high quality factor photonic crystal microcavities, Opt. Express 12(7):1458-1463.

    Article  ADS  Google Scholar 

  • Stratton, J.A., 1997, Electromagnetic Theory, Mcgraw Hill, New York.

    Google Scholar 

  • Tai, C.-Y., Unal, B., Wilkinson, J.S., Ghanem, M.A., and Bartlett, P.N., 2004, Optical coupling between a self-assembled microsphere grating and a rib waveguide, Appl. Phys. Lett, 84(18):3513-3515.

    Article  ADS  Google Scholar 

  • Tishinin, D.V., Dapkus, P.D., Bond, A.E., Kim, I., Lin, C.K., and O'Brien, J., 1999, Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding, IEEE Photon. Technol. Lett. 11(8):1003-1005.

    Article  ADS  Google Scholar 

  • Umashankar, K., Taflove, A., and Rao, S.M., 1986, Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects, IEEE Trans. Antennas. Propagat. 34(6):758-766.

    Article  ADS  Google Scholar 

  • Vahala, K.J., 2003, Optical microcavities, Nature 424:839-845.

    Article  ADS  Google Scholar 

  • Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Steed, E. W., and Kimble, H. J., 1998, High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett. 23:247-249.

    ADS  Google Scholar 

  • Vernooy, D.W., Furusawa, A., Georgiades, N.P., Ilchenko, V.S., and Kimble, H.J., 1998, Cavity QED with high-Q whispering gallery modes, Phys. Rev. A 57:R2293-R2296.

    Article  ADS  Google Scholar 

  • Vollmer, F., Arnold, S., Braun, D., Teraoka, I., and Libchaber, A., 2003, Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities, Biophys. J. 85:1974-1979.

    Article  Google Scholar 

  • Vuckovic, J., Painter, O., Xu, Y., Yariv, A., and Scherer, A., 1999, Finite-difference timedomain calculation of the spontaneous emission coupling factor in optical microcavities, IEEE J. Quantum. Electron. 35(8):1168- 1175.

    Article  ADS  Google Scholar 

  • Wiersig, J., 2003, Boundary element method for resonances in dielectric microcavities, J. Opt. A: Pure Appl. Opt. 5:53-60.

    Article  ADS  Google Scholar 

  • Xu, Y., Lee, R.K., and Yariv, A., 2000, Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity, Phys. Rev. A 61:033808.

    ADS  Google Scholar 

  • Yamamoto, Y. and Slusher, R.E., 1993, Optical processes in microcavities, Physics Today, 46(6):66-73.

    Google Scholar 

  • Yanagase, Y., Suzuki, S., Kokubun, Y., and Chu, S. T., 2002, Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter, J. Lightwave Technol. 20(8):1525-1529.

    Article  ADS  Google Scholar 

  • Yariv, A., 1973, Coupled-mode theory for guided-wave optics, IEEE J. Quantum Electron. QE-9(9):919-933.

    ADS  Google Scholar 

  • Yariv, A., Xu, Y., Lee, R.K., and Scherer, A., 1999, Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24(11):711-713.

    ADS  Google Scholar 

  • Yokoyama, H. and Ujihara, K. (eds), 1995, Spontaneous emission and laser oscillation in microcavities, CRC Press, New York.

    Google Scholar 

  • Yokoyama, H., 1992, Physics and device applications of optical microcavities, Science 256: 66-70.

    ADS  Google Scholar 

  • Yoshie, T., Vuckovic, J., Scherer, A., Chen, H., and Deppe, D., 2001, High quality twodimensional photonic crystal slab cavities, Appl. Phys. Lett. 79(26):4289-4291.

    Article  ADS  Google Scholar 

  • Zhang, J.P., Chu, D.Y., Wu, S.L., Bi, W.G., Tiberio, R.C., Tu, C.W., and Ho, C.T., 1996, Directional light output from photonic-wire microcavity semiconductor lasers, IEEE Photon. Technol. Lett. 8(8):968-970.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Benson, T.M., Boriskina, S.V., Sewell, P., Vukovic, A., Greedy, S.C., Nosich, A.I. (2006). MICRO-OPTICAL RESONATORS FOR MICROLASERS AND INTEGRATED OPTOELECTRONICS. In: Janz, S., Ctyroky, J., Tanev, S. (eds) Frontiers in Planar Lightwave Circuit Technology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 216. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4167-5_02

Download citation

Publish with us

Policies and ethics