Skip to main content

Photophosphorylation and the chemiosmotic perspective

  • Chapter
Discoveries in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

  • 125 Accesses

Abstract

Photophosphorylation was discovered in chloroplasts by D. Arnon and coworkers, and in bacterial ‘chromatophores’ (intercytoplasmic membranes) by A. Frenkel. Initial low rates were amplified by adding electron-carrying compounds such as FMN, later shown to support the ‘pseudocyclic’ electron flow. ATP synthesis, and coupling to electron flow, was detected accompanying linear electron flow from H2O to either NADP+ or ferricyanide. Another pattern of electron flow supporting photophosphorylation was that of a cycle around Photosystem I (PS I). Isolation and analysis of the ATP synthase showed, as with mitochondrial and bacterial analogues, an intrinsic membrane complex (CF0) and an extrinsic complex (CF1). CF1 is a latent ATPase, activated additively by the high-energy state of the thylakoids, and by reduction of a disulfide bond on the gamma subunit. Once reduced, ATP synthesis occurs at lower energy levels. The search for an ‘intermediate’ linking electron flow and ATP synthesis led to the discovery of post-illumination ATP synthesis by thylakoids, where turnover occurs in the dark. Once interpreted by P. Mitchell’s chemiosmotic hypothesis, this led to the discovery of light-driven proton uptake into the thylakoid lumen, with accompanying Cl intake and Mg2+ and K+ output. Chemiosmosis was confirmed in several ways, including ATP synthesis in the dark due to an acid-to-base transition of thylakoids, and photophosphorylation accomplished in artificial lipid vesicles containing both the proton-pumping bacterial rhodopsin and a mitochondrial ATPase complex. The now generally accepted chemiosmotic interpretation is able to clarify some other aspects of photosynthesis as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen MB, Whatley FR and Arnon DJ (1958) Photosynthesis by isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. Biochim Biophys Acta 27: 16–23

    Article  PubMed  CAS  Google Scholar 

  • Anthon GE and Jagendorf AT (1983) Effect of methanol on spinach thylakoid ATPase. Biochim Biophys Acta 723: 358–365

    Article  CAS  Google Scholar 

  • Arnon DI, Allen MB and Whatley FR (1954) Photosynthesis by isolated chloroplasts. II. Photophosphorylation, the conversion of light into phosphate bond energy. J Am Chem Soc 76: 6324–6329

    Article  CAS  Google Scholar 

  • Arnon DI, Whatley FR and Allen MB (1958a) Assimilatory power in photosynthesis. Science 127: 1026–1034

    CAS  PubMed  Google Scholar 

  • Arnon DI, Whatley FR and Allen MB (1958b) Photosynthesis by isolated chloroplasts. VIII. Photosynthetic preparation and the generation of assimilatory power. Biochim Biophys Acta 32: 47–57

    Article  Google Scholar 

  • Arnon DI, Losada M, Whatley FR, Tsujimoto HY, Hall DO and Horton AA (1961) Photosynthetic phosphorylation and molecular oxygen. Proc Natl Acad Sci USA 47: 1314–1344.

    Article  PubMed  CAS  Google Scholar 

  • Avron M (1963) A coupling factor in photophosphorylation. Biochim Biophys Acta 77: 699–702

    Article  CAS  Google Scholar 

  • Avron M and Jagendorf AT (1958) Co-factors and rates of photosynthetic phosphorylation by spinach chloroplasts. J Biol Chem 231: 277–290

    PubMed  Google Scholar 

  • Avron M and Jagendorf AT (1959) Evidence concerning the mechanism of ATP formation by spinach chloroplasts. J Biol Chem 234: 967–972

    PubMed  CAS  Google Scholar 

  • Avron M, Krogmann DW and Jagendorf AT (1958) The relation of photosynthetic phosphorylation to the Hill reaction. Biochim Biophys Acta 30: 144–153

    Article  PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T (1977) ATPase. In: Trebst A and Avron M (eds) Encyclopedia of Plant Physiology, New Series, Vol 5, pp 369–373. Springer-Verlag, Berlin

    Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31: 341–374

    Article  CAS  Google Scholar 

  • Carmeli C and Racker E (1973) Partial resolution of enzymes catalyzing photophosphorylation. XIV. Reconstitution of chlorophyll-deficient vesicles catalyzing phosphate-adenosine triphosphate exchange. J Biol Chem 248: 8281–8287

    PubMed  CAS  Google Scholar 

  • Carrell CJ, Zhang H, Cramer WA and Smith JL (1997) Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5: 1613–1625

    Article  PubMed  CAS  Google Scholar 

  • Chance B and Williams CR (1956) The respiratory chain and oxidative photophosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  • Deamer DW and Packer L (1969) Light-dependent anion transport in isolated spinach chloroplasts. Biochim Biophys Acta 172: 539

    Article  PubMed  CAS  Google Scholar 

  • Dilley RA (1991) Energy coupling in chloroplasts: a calcium-gated switch controls proton fluxes between localized and delocalized proton gradients. Curr Topics Bioenerg 16: 265–318

    CAS  Google Scholar 

  • Dilley RA and Vernon LP (1965) Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys 111: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Emerson R, Stauffer JS and Umbreit WW (1944) Relationships between photosynthesis and phosphorylation in Chlorella. Am J Bot 31: 107–120

    Article  CAS  Google Scholar 

  • Farron F (1970) Isolation and properties of a chloroplast coupling factor and heat-activated ATPase. Biochemistry 9: 3823–3828

    Article  PubMed  CAS  Google Scholar 

  • Frenkel A (1954) Light-induced phosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 76: 5568–5569

    Article  CAS  Google Scholar 

  • Futai M, Noumi T and Maeda M (1989) ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem 58: 111–136

    Article  PubMed  CAS  Google Scholar 

  • Gest H and Kamen MD (1948) Studies on the phosphorus metabolism of green algae and purple bacteria in relation to photosynthesis. J Biol Chem 176: 299–318

    CAS  PubMed  Google Scholar 

  • Good NE (1960) Activation of the Hill reaction by amines. Biochim Biophys Acta 40: 502–517

    Article  PubMed  CAS  Google Scholar 

  • Hauska G, Reimer S and Trebst A (1974) Native and artificial energy-conserving sites in cyclic photophosphorylation systems. Biochim Biophys Acta 357: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Hauska G, Oettmeier W, Reimer S and Trebst A (1975) Energy conservation in photoreductions by Photosystem I. Shuttles of artificial electron donors for Photosystem I across the thylakoid membrane. Z Naturforsch C 30: 37–45

    PubMed  CAS  Google Scholar 

  • Hightower KE and McCarty RE (1996) Influence of nucleotides on the cold stability of chloroplast coupling factor 1. Biochemistry 35: 10051–10057

    Article  PubMed  CAS  Google Scholar 

  • Hind G and Jagendorf AT (1963) Separation of light and dark stages in photophosphorylation. Proc Nat Acad Sci USA 49: 715–722

    Article  PubMed  CAS  Google Scholar 

  • Hind G and Jagendorf AT (1965) Light scattering changes associated with the production of a possible intermediate in photophosphorylation. J Biol Chem 240: 3195–3201

    PubMed  CAS  Google Scholar 

  • Jackson JB and Crofts AR (1971) The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur J Biochem 18: 120–130

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT (1962) Biochemistry of energy transformations during photosynthesis. In: Glass HB (ed) Survey of Biological Progress, Vol IV, pp 181–344. Academic Press, New York

    Google Scholar 

  • Jagendorf AT (1998) Chance, luck and photosynthesis research — an inside story. Photosynthesis Res 57: 215–229

    Article  Google Scholar 

  • Jagendorf AT and Hind G (1963) Studies on the mechanism of photophosphorylation, In: Kok B and Jagendorf AT (eds) Photosynthetic Mechanisms of Green Plants, pp 599–610. Publication 1145 of National Academy of Sciences-National Research Council, Washington, DC

    Google Scholar 

  • Jagendorf AT and Neumann J (1965) Effect of uncouplers on the light-induced pH rise with spinach chloroplasts. J Biol Chem 240: 3210–3214

    PubMed  CAS  Google Scholar 

  • Jagendorf AT and Smith M (1962) Uncoupling phosphorylation in spinach chloroplasts by absence of cations. Plant Physiol 37: 135–141

    PubMed  CAS  Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acidbase transition of spinach chloroplasts. Proc Nat Acad Sci USA 55: 170–177

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT, McCarty RE and Robertson D (1991) Coupling factor components: structure and function. In: Bogorad L and Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B, pp 225–254. Academic Press, New York

    Google Scholar 

  • Junesch U and Gräber P (1985) The rate of ATP synthesis as a function of DpH in normal and dithiothreitol-modified chloroplasts. Biochim Biophys Acta 809: 429–434

    Article  CAS  Google Scholar 

  • Junge W and Jackson JB (1982) The development of electrochemical potential gradients across photosynthetic membranes. In: Govindjee (ed) Photosynthesis: Energy Conversion by Plants and Bacteria, pp 589–646. Academic Press, New York

    Google Scholar 

  • Junge W and Witt HT (1968) On the ion transport system of photosynthesis. Investigations on a molecular level. Z Naturforsch 23b: 244–254

    Google Scholar 

  • Kamienietzky A and Nelson N (1975) Preparation and properties of chloroplasts depleted of chloroplast coupling factor 1 by sodium bromide treatment. Plant Physiol 55: 282–287

    PubMed  CAS  Google Scholar 

  • Kandler O (1950) Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. I. Phosphatspiegelschwenkungen bei Chlorella pyrenoidosa als Folde des Licht-Dunkel-Wechsels. Z Naturforsch 5b: 423–437

    CAS  Google Scholar 

  • Kobayashi Y, Neimanis S and Heber U (1995) Coupling ration H+/e = 3 vs H+/e = 2 in chloroplasts, and quantum requirements of oxygen exchange during the reduction of nitrite, ferricyanide or methylviologen. Plant Cell Physiol 6: 1613–1620

    Google Scholar 

  • Komatsu-Takaki M (1989) Energy-dependent conformational changes in the subunit of the chloroplast ATP synthase (CFoCF1). J Biol Chem 264: 17750–17753

    PubMed  CAS  Google Scholar 

  • Krogmann DW, Jagendorf AT and Avron A (1959) Uncouplers of spinach chloroplast photosynthetic phosphorylation. Plant Physiol 34: 272–277

    PubMed  CAS  Google Scholar 

  • Lardy HA and Wellman H (1952) Oxidative phosphorylations: role of inorganic phosphate and acceptorsystems in control of metabolic rates. J Biol Chem 195: 215–224

    PubMed  CAS  Google Scholar 

  • Lien S and Racker E (1971) Partial resolution of the enzymes catalyzing photophosphorylation. VIII Properties of silico-tungstate treated particles. J Biol Chem 246: 4298–4307

    PubMed  CAS  Google Scholar 

  • Loomis WF and Lipmann F (1948) Reversible inhibition of the coupling between phosphorylation and oxidation. J Biol Chem 173: 807–808

    CAS  PubMed  Google Scholar 

  • Maclachlan GA and Porter HK (1959) Replacement of oxygen by light as the energy source for glucose metabolism in tobacco leaves. Proc Roy Soc London B 150: 460–473

    Article  CAS  Google Scholar 

  • McCarty RE (1969) The uncoupling of photophosphorylation by valinomycin and ammonium chloride. J Biol Chem 244: 4292–4298

    PubMed  CAS  Google Scholar 

  • McCarty RE (1992) A plant biochemist’s view of H+-ATPases and ATP synthases. J Exp Bot 172: 431–441

    CAS  Google Scholar 

  • McCarty RE and Fagan J (1973) Light-stimulated incorporation of N-ethylmaleimide into coupling factor 1 in spinach chloroplasts. Biochem 12: 1503–1507

    Article  CAS  Google Scholar 

  • McCarty RE, Pittman PR and Tsuchiya Y (1972) Light-dependent inhibition of photophosphorylation by N-ethylmaleimide. J Biol Chem 247: 3048–3051

    PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    Article  CAS  Google Scholar 

  • Miles CD and Jagendorf AT (1970) Evaluation of electron transport as the basis of ATP synthesis after acid-base transition by spinach chloroplasts. Biochemistry 9: 429–4341

    Article  PubMed  CAS  Google Scholar 

  • Mills JD and Mitchell P (1984) Thiol modulation of the chloroplast protonmotive ATPase and its effect on photophosphorylation. Biochim Biophys Acta 764: 93–104

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1975) The proton-motive Q cycle: a general formulation. FEBS Lett 59: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Morita S, Itoh S and Nishimura M (1983) Flash-induced photophosphorylation in chloroplasts with activated ATPase. Biochim Biophys Acta 724: 411–415

    Article  CAS  Google Scholar 

  • Moroney and McCarty RE (1982) Light-dependent cleavage of the g subunit of coupling factor 1 by trypsin causes activation of Mg2+ ATPase activity and uncoupling of photophosphorylation in spinach chloroplasts. J Biol Chem 257: 5915–5920

    PubMed  CAS  Google Scholar 

  • Moroney JV, Lopresti L, McEwen BF, McCarty RE and Hammes GG (1983) The Mr value of chloroplast coupling factor 1. FEBS Lett 158: 58–62

    Article  CAS  Google Scholar 

  • Nelson N, Eytan E, Notsani B, Sigrist H, Sigrist-Nelson K and Gitler C (1977) Isolation of a chloroplast N,N’-dicyclohexylcarbodiimide-binding proteolipid, active in proton translocation. Proc Natl Acad Sci USA 74: 2375–2378

    Article  PubMed  CAS  Google Scholar 

  • Neumann J and Jagendorf AT (1964) Light-induced pH changes related to phosphorylation by chloroplasts. Arch Biochem Biophys 107: 109–119

    Article  PubMed  CAS  Google Scholar 

  • Ouitrakul R and Izawa S (1973) Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. I. A receptor-specific inhibition by KCN. Biochim Biophys Acta 305: 105–118

    Article  PubMed  CAS  Google Scholar 

  • Petrack B and Lipmann F (1961) Photophosphorylation and photohydrolysis in cell-free preparations of blue-green algae. In: McElroy WD and Glass HB (eds) Light and Life, pp 621–630. Johns Hopins Press, Baltimore

    Google Scholar 

  • Pick U and Bassilian S (1981) Octyl glucoside stimulates a Mg2+-specific ATPase activity in chloroplast CF1. In: Selman BR and Selman-Reimer S (eds) Energy Coupling in Photosynthesis, pp 251–260. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Racker E (1970) Function and structure of the inner membranes of mitochondria and chloroplasts. In: Racker E (ed) Membranes of Mitochondria and Chloroplasts, pp 127–171. Van Nostrand Reinhold, New York

    Google Scholar 

  • Racker E and Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light driven proton uptake and adenosine triphosphate formation. Biochemistry 20: 662–663

    Google Scholar 

  • Racker E, Hauska GA, Lien S, Berzborn RG and Nelson N (1972) Resolution and reconstitution of the system of photophosphorylation. In: Forti G (ed) Proceedings of the 2nd International Congress on Photosynthesis Research, Vol III, pp 1097–1112. Dr W Junk Publishers, The Hague

    Google Scholar 

  • Richter ML, Patrie WJ and McCarty RE (1984) Preparation of the e subunit and e-deficient chloroplast coupling factor 1 in reconstitutively active forms. J Biol Chem 259: 7371–7373

    PubMed  CAS  Google Scholar 

  • Rottenberg H (1985) Proton-coupled energy conversion: chemiosmotic and intramembrane coupling. Modern Cell Biol. 4: 47–83

    CAS  Google Scholar 

  • Ruben S (1943) Photosynthesis and phosphorylation. J Am Chem Soc 65: 279–282

    Article  CAS  Google Scholar 

  • Rumberg B (1977) Field Changes. In: Trebst A and Avron M (eds) Encyclopedia of Plant Physiology, New Series, Vol 5, pp 405–415. Springer-Verlag, Berlin

    Google Scholar 

  • Ryrie I and Jagendorf AT (1971) An energy-linked conformational change in the coupling factor protein in chloroplasts. Studies with hydrogen exchange. J Biol Chem 246: 3771–3774

    PubMed  CAS  Google Scholar 

  • Sakurai H, Shinohara K, Hisabori T and Shinohara K (1981) Enhancement of adenosine triphosphatase activity of purified chloroplast coupling factor 1. J Biochem (Tokyo) 90: 95–102

    PubMed  CAS  Google Scholar 

  • Schwartz M (1968) Light induced proton gradient links electron transport and photophosphorylation. Nature (London) 219: 915–919

    Article  PubMed  CAS  Google Scholar 

  • Schwink L (1956) Nachweis von Adenosinetriphosphosauer (ATP) in Grünalgen und Helodea sowie Einbau von radioaktivem Phosphor (32P) bei der Photosynthese. Planta 47: 165–218

    Article  Google Scholar 

  • Sebald W and Hoppe J (1981) On the structure and genetics of the proteolipid subunit of the ATP synthase complex. In: Sanadi DR (ed) Current Topics in Bioenergetics, Vol 12, pp 1–64. Academic Press, New York

    Google Scholar 

  • Shavit N, Skye GE and Boyer PD (1967) Occurrence and possible mechanism of 32P and 18O exchange reactions of photophosphorylation. J Biol Chem 242: 5125–5130

    PubMed  CAS  Google Scholar 

  • Shen YK and Shen GM (1962) The’ light intensity effect’ and intermediate steps of photophosphorylation. Scientia Sinica 11: 1097–1106

    CAS  Google Scholar 

  • Simonis W and Grube KH (1952) Untersuchungen über den Zusammenhang von Phosphathaushalt und Photosynthese. Z Naturforsch 7b: 194–196

    CAS  Google Scholar 

  • Steele JA, Uchytil RF and Durbin RB (1978) The stimulation of coupling factor 1 ATPase by tentoxin. Biochim Biophys Acta 504: 136–141

    Article  PubMed  CAS  Google Scholar 

  • Strehler BL (1953) Firefly luminescence in the study of energy transfer mechanisms. II. Adenosine triphosphate and photosynthesis. Arch Biochem Biophys 43: 67–79

    Article  PubMed  CAS  Google Scholar 

  • Stroop SD and Boyer PD (1985) Characteristics of the ATP synthase as revealed by reaction at low ADP concentrations. Biochem 24: 2304–2310

    Article  CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY and Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49: 567–572

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Barber J and Jagendorf AT (1980) Electrostatic control of chloroplast coupling factor binding to thylakoid membranes as indicated by cation effects on electron transport and reconstitution of photophosphorylation Biochim Biophys Acta 591: 331–345

    Article  PubMed  CAS  Google Scholar 

  • Thayer WS and Hinkle PC (1975) Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J Biol Chem 250: 5330–5335

    PubMed  CAS  Google Scholar 

  • Trebst A and Reimer S (1973) Properties of photoreductions by Photosystem II in isolated chloroplasts. An energy-conserving step in the photoreduction of benzoquinone by Photosystem II in the presence of dibromothymoquinone. Biochim Biophys Acta 305: 129–139

    Article  PubMed  CAS  Google Scholar 

  • Uribe E and Jagendorf AT (1967) On the localization of organic acids in acid-induced ATP synthesis. Plant Physiol 42: 697–705

    Article  PubMed  CAS  Google Scholar 

  • Vambutas VK and Racker E (1965) Partial resolution of the enzymes catalyzing photophosphorylation. I. Stimulation of photophosphorylation by a preparation of a latent, Ca2+-dependent adenosine triphosphatase from chloroplasts. J Biol Chem 240: 2660–2667

    PubMed  CAS  Google Scholar 

  • Vambutas V, Beattie DS and Bittman R (1984) Isolation of chloride ion transport active protein(s) from thylakoid membranes. Arch Biochem Biophys 232: 538–548

    Article  PubMed  CAS  Google Scholar 

  • Van Walraven HS, Strotmann H, Schwarz O and Rumberg B (1996) The H+/ATP coupling ratio of the ATP synthase from thiolmodulated chloroplasts and two cyanobacterial strains is four. FEBS Lett 379: 309–313

    Article  PubMed  Google Scholar 

  • Wassink EC (1957) Phosphate in the photosynthetic cycle in Chlorella. In: Gaffron H, Brown AH, French CS, Livingston R, Rabinowitch E, Strehler BL and Tolbert NE (eds) Research in Photosynthesis, pp 333–339. Interscience, New York

    Google Scholar 

  • Williams AM (1956) Light-induced uptake of inorganic phosphate in cell-free extracts of obligately anaerobic photosynthetic bacteria. Biochim Biophys Acta 19: 570

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Muneyukis E and Hisabori T (2001) ATP synthase-a marvelous rotary engine of the cell. Nature Rev Mol Biol 2: 669–677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Jagendorf, A.T. (2005). Photophosphorylation and the chemiosmotic perspective. In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_52

Download citation

Publish with us

Policies and ethics