Skip to main content

Recent Developments in the Balian-Low Theorem

  • Chapter
Harmonic Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The Balian-Low Theorem is one of many manifestations of the uncertainty principle in harmonic analysis. Originally stated as a result on the poor time-frequency localization of generating functions of Gabor orthonormal bases, it has become a synonym for many general and abstract problems in time-frequency analysis. In this chapter we present some of the directions in which the Balian-Low Theorem has been extended in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Balian, Un principe d’incertitude fort en théorie du signal ou en mécanique quantique, C. R. Acad. Sci. Paris, 292 (1981), pp. 1357–1362.

    Google Scholar 

  2. R. Balan, Extensions of no-go theorems to many signal systems, in: Wavelets, Multiwavelets, and their Applications (San Diego, 1997), Contemp. Math., Vol. 216, Amer. Math. Soc., Providence, RI, 1998, pp. 3–14.

    Google Scholar 

  3. R. Balan, Topological obstructions to localization results, in Wavelets: Applications in Signal and Image Processing IX, Proc. SPIE, Vol. 4478, SPIE, Bellingham, WA, 2001, pp. 184–191.

    Google Scholar 

  4. R. Balan, An uncertainty inequality for wavelet sets, Appl. Comput. Harmon. Anal., 5 (1998), pp. 106–108.

    Article  MATH  Google Scholar 

  5. R. Balan and I. Daubechies, Optimal stochastic encoding and approximation schemes using Weyl-Heisenberg sets, in: Advances in Gabor Analysis, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 2003, pp. 259–320.

    Google Scholar 

  6. G. Battle, Heisenberg proof of the Balian-Low theorem, Lett. Math. Phys., 15 (1988), pp. 175–177.

    Article  Google Scholar 

  7. G. Battle, Phase space localization theorem for ondelettes, J. Math. Phys., 30 (1989), pp. 2195–2196.

    Article  MATH  Google Scholar 

  8. G. Battle, Heisenberg inequalities for wavelet states, Appl. Comput. Harmon. Anal, 4 (1997), pp. 119–146.

    Article  MATH  Google Scholar 

  9. J. J. Benedetto, Gabor representations and wavelets, in: Commutative Harmonic Analysis (Canton, NY, 1987), Contemp. Math., Vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 9–27.

    Google Scholar 

  10. J. J. Benedetto, Frame decompositions, sampling, and uncertainty principles, in: Wavelets: Mathematics and Applications, J. J. Benedetto and M. W. Frazier, eds., CRC Press, Boca Raton, FL, 1994, pp. 247–304.

    Google Scholar 

  11. J. J. Benedetto, W. Czaja, P. Gadziński, and A. M. Powell, The Balian-Low Theorem and regularity of Gabor systems, J. Geom. Anal., 13 (2003), pp. 217–232.

    MATH  Google Scholar 

  12. J. J. Benedetto, W. Czaja, and A. Ya. Maltsev, The Balian-Low theorem for the symplectic form on ℝ2d, J. Math. Phys., 44 (2003), pp. 1735–1750.

    Article  MATH  Google Scholar 

  13. J. J. Benedetto, W. Czaja, A. M. Powell, and J. Sterbenz, A (1, ∞) Balian-Low theorem, Math. Res. Lett., 13 (2006), pp. 467–474.

    MATH  Google Scholar 

  14. J. J. Benedetto, W. Czaja, and A. M. Powell, An optimal example for the Balian-Low Uncertainty Principle, SIAM J. Math. Anal., 38 (2006), pp. 333–345.

    Article  MATH  Google Scholar 

  15. J. J. Benedetto, C. Heil, and D. F. Walnut, Uncertainty principles for time-frequency operators, in: Continuous and Discrete Fourier Transforms, Extension Problems and Wiener-Hopf Equations, Oper. Theory Adv. Appl., Vol. 58, I. Gohberg, ed., Birkhäuser, Basel, 1992, pp. 1–25.

    Google Scholar 

  16. J. J. Benedetto, C. Heil, and D. F. Walnut, Differentiation and the Balian-Low Theorem, J. Fourier Anal. Appl., 1 (1995), pp. 355–402.

    Article  MATH  Google Scholar 

  17. J. J. Benedetto, C. Heil, and D. F. Walnut, Gabor systems and the Balian-Low Theorem, in Gabor Analysis and Algorithms, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, MA, 1998, pp. 85–122.

    Google Scholar 

  18. J. J. Benedetto and A. M. Powell, A (p, q) version of Bourgain’s theorem, Trans. Amer. Math. Soc., 358 (2006), pp. 2489–2505.

    Article  MATH  Google Scholar 

  19. J. Bourgain, A remark on the uncertainty principle for Hilbertian basis, J. Func. Anal., 79 (1988), pp. 136–143.

    Article  MATH  Google Scholar 

  20. O. Christensen, B. Deng, and C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal., 7 (1999), pp. 292–304.

    Article  MATH  Google Scholar 

  21. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36 (1990), pp. 961–1005.

    Article  MATH  Google Scholar 

  22. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  23. I. Daubechies and A. J. E. M. Janssen, Two theorems on lattice expansions, IEEE Trans. Inform. Theory, 39 (1993), pp. 3–6.

    Article  MATH  Google Scholar 

  24. J. Dziubański and E. Hernández, Band-limited wavelets with subexponential decay, Canad. Math. Bull., 41 (1998), pp. 398–403.

    Google Scholar 

  25. H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal., 146 (1997), pp. 464–495.

    Article  MATH  Google Scholar 

  26. H. G. Feichtinger and T. Strohmer, Eds., Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, MA, 1998.

    MATH  Google Scholar 

  27. H. G. Feichtinger and T. Strohmer, Eds., Advances in Gabor Analysis, Birkhäuser, Boston, MA, 2003.

    MATH  Google Scholar 

  28. G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl., 3 (1997), pp. 207–238.

    Article  MATH  Google Scholar 

  29. J.-P. Gabardo and D. Han, J.-P. Gabardo and D. Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys., 45 (2004), pp. 3362–3378.

    Article  MATH  Google Scholar 

  30. K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Studia. Math., 121 (1996), pp. 87–104.

    MATH  Google Scholar 

  31. K. Gröchenig, Aspects of Gabor analysis on locally compact abelian groups, in: Gabor Analysis and Algorithms, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 1998, pp. 211–231.

    Google Scholar 

  32. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.

    MATH  Google Scholar 

  33. K. Gröchenig, Uncertainty principles for time-frequency representations, in: Advances in Gabor Analysis, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 2003, pp. 11–30.

    Google Scholar 

  34. K. Gröchenig, D. Han, C. Heil, and G. Kutyniok, The Balian-Low Theorem for symplectic lattices in higher dimensions, Appl. Comput. Harmon. Anal., 13 (2002), pp. 169–176.

    Article  MATH  Google Scholar 

  35. V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  36. C. Heil, Wiener Amalgam Spaces in Generalized Harmonic Analysis and Wavelet Theory, Ph.D. Thesis, University of Maryland, College Park, MD, 1990.

    Google Scholar 

  37. C. Heil, Linear independence of finite Gabor systems, Chapter 9, this volume (2006).

    Google Scholar 

  38. T. Høholdt, H. Jensen, and J. Justesen, Double series representation of bounded signals, IEEE Trans. Inform. Theory, 34 (1988), pp. 613–624.

    Article  MATH  Google Scholar 

  39. A. J. E. M. Janssen, The Zak transform: a signal transform for sampled time-continuous signals, Philips J. Res., 43 (1988), pp. 23–69.

    MATH  Google Scholar 

  40. F. Low, Complete sets of wave packets, in: A Passion for Physics—Essays in Honor of Geoffrey Chew, C. DeTar, J. Finkelstein, and C. I. Tan, eds., World Scientific, Singapore, 1985, pp. 17–22.

    Google Scholar 

  41. V. Maz’ja, Sobolev Spaces, Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  42. A. Messiah, Quantum Mechanics, Interscience, New York, 1961.

    Google Scholar 

  43. M. Porat, Y. Y. Zeevi, and M. Zibulski, Multi-window Gabor schemes in signal and image representations, in: Gabor Analysis and Algorithms, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 1998, pp. 381–408.

    Google Scholar 

  44. A. M. Powell, The Uncertainty Principle in Harmonic Analysis and Bourgain’s Theorem, Ph.D. Thesis, University of Maryland, College Park, MD, 2003.

    Google Scholar 

  45. J. Ramanathan and T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., 2 (1995), pp. 148–153.

    Article  MATH  Google Scholar 

  46. E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  47. Y. Y. Zeevi and M. Zibulski, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. Comput. Harmon. Anal., 4 (1997), pp. 188–221.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Czaja, W., Powell, A.M. (2006). Recent Developments in the Balian-Low Theorem. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_5

Download citation

Publish with us

Policies and ethics