Skip to main content

Survival Signaling in Retinal Pigment Epithelial Cells in Response to Oxidative Stress: Significance in Retinal Degenerations

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 572))

Abstract

Photoreceptor survival depends on the integrity of retinal pigment epithelial (RPE) cells. The pathophysiology of several retinal degenerations involves oxidative stress-mediated injury and RPE cell death; in some instances it has been shown that this event is mediated by A2E and its epoxides. Photoreceptor outer segments display the highest DHA content of any cell type. RPE cells are active in DHA uptake, conservation, and delivery. Delivery of DHA to photoreceptor inner segments is mediated by the interphotoreceptor matrix. DHA is necessary for photoreceptor function and at the same time is a target of oxidative stress-mediated lipid peroxidation. It has not been clear whether specific mediators generated from DHA contribute to its biological properties. Using ARPE-19 cells, we demonstrated the synthesis of 10,17S-docosatriene [neuroprotectin D1 (NPD1)]. This synthesis was enhanced by the calcium ionophore A-23187, by IL-1β, or by supplying DHA. Added NPD1 (50nM) potently counteracted H2O2/tumor necrosis factor-α oxidative stress-triggered apoptotic DNA damage in RPE. NPD1 also up-regulated the anti-apoptotic proteins Bcl-2 and Bcl-xL and decreased pro-apoptotic Bax and Bad expression. Moreover, NPD1 (50nM) inhibited oxidative stress-induced caspase-3 activation. NPD1 also inhibited IL-1β-stimulated expression of COX-2. Furthermore, A2E-triggered oxidative stress induction of RPE cell apoptosis was also attenuated by NPD1. Overall, NPD1 protected RPE cells from oxidative stress-induced apoptosis. In conclusion, we have demonstrated an additional function of the RPE: its capacity to synthesize NPD1. This new survival signaling is potentially of interest in the understanding of the pathophysiology of retinal degenerations and in exploration of new therapeutic modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. E., Maude, M. B., and Bok, D., 2001, Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest. Ophthalmol. Vis. Sci. 42:1715–1720.

    PubMed  CAS  Google Scholar 

  • Anderson, R. E., Maude, M. B., McClellan, M., Matthes, M. T., Yasumura, D., and LaVail, M. M., 2002, Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8:351–358.

    PubMed  CAS  Google Scholar 

  • Aveldano, M. I., and Bazan, N. G., 1974, Displacement into incubation medium by albumin of highly unsaturated retina free fatty acids arising from membrane lipids. FEBS Lett. 40:53–56.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano, M. I., and Bazan, N. G., 1975, Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols. Brain Res. 100:99–110.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano de Caldironi, M. I., and Bazan, N. G., 1977, Acyl groups, molecular species, and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv. Exp. Med. Biol. 83:249–256.

    Google Scholar 

  • Barreiro, S. G., Marcheselli, V. L., and Bazan, N. G., 2005, Human retinal pigment epithelial cells protected by NPD1 after A2E-epoxide induction. ARVO abstract B224.

    Google Scholar 

  • Bazan, N. G., 1970, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.

    PubMed  CAS  Google Scholar 

  • Bazan, N. G., 1990, Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. Nutrition and the Brain, vol. 8, R. J. Wurtman, and J. J. Wurtman, eds., Raven Press, Ltd., New York, pp. 1–24.

    Google Scholar 

  • Bazan, N. G., in press Eicosanoids, docosanoids, platelet-activating factor, and inflammation. Basic Neurochemistry 7th ed. G. Siegel, R. W. Albers, S. Brady, and D. Price, eds. London, Elsevier.

    Google Scholar 

  • Bazan, N. G., Birkle, D. L., and Reddy, T. S., 1984, Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Commun. 125:741–747.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., Birkle, D. L., and Reddy, T. S., 1985, Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degeneration. Retinal Degeneration: Experimental and Clinical Studies. M. M. LaVail, R. E. Anderson, and J. Hollyfield, eds. Alan R. Liss, Inc., New York, pp. 159–187.

    Google Scholar 

  • Bazan N. G., Marcheselli, V. L., Hu, J., Finley, J., Bok, D., and Chandamuri, B., 2005, Pigment epithelium-derived growth factor (PEDF) selectively up-regulates NPD1 synthesis and release throught the apical side of human RPE cells in primary cultures. ARVO abstract B141.

    Google Scholar 

  • Bicknell, I. R., Darrow, R., Barsalou, L., Fliesler, S. J., and Organisciak, D. T., 2002, Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Mol. Vis. 8:333–340.

    PubMed  CAS  Google Scholar 

  • Bryckaert, M., Guillonneau, X., Hecquet, C., Courtois, Y., and Mascarelli, F., 1999, Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene. 18:7584–7593.

    Article  PubMed  CAS  Google Scholar 

  • Catalan, J., Moriguchi, T., Slotnick, B., Murthy, M., Greiner, R. S., and Salem, N. Jr., 2002, Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci. 116:1022–1031.

    Article  PubMed  CAS  Google Scholar 

  • Choe, H.-G., and Anderson, R. E., 1990, Unique molecular species composition of glycerolipids of frog rod outer segments. Exp. Eye Res. 51:159–165.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G., 1992, Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 11:73–83.

    PubMed  CAS  Google Scholar 

  • Hinton, D. R., He, S., and Lopez, P. F., 1998, Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch. Ophthalmol. 116:203–209.

    PubMed  CAS  Google Scholar 

  • Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., and Serhan, C. N., 2003, Novel docosanoids and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., and Bok, D., 2001, A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol. Vis. 7:14–19.

    PubMed  CAS  Google Scholar 

  • Kim, H. Y., Akbar, M., Lau, A., and Edsall, L., 2000, Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Cao, W., and Anderson, R. E., 2001, Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp. Eye Res. 73:569–577.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y. G., Jorgensen, A. G., Kaestel, C. G., Wiencke, A. K., Lui, G. M., la Cour, M. H., Ropke, C. H., and Nissen, M. H., 2000, Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin. Curr. Eye Res. 20:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Litman, B. J., Niu, S. L., Polozova, A., and Mitchell, D. C., 2001, The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J. Mol. Neurosci. 16:237–242.

    Article  PubMed  CAS  Google Scholar 

  • Marcheselli, V. L. Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan, N. G., 2003, Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817. Erratum in: J. Biol. Chem. 2003, 278:51974.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., and Bazan, N. G., in press, Apoptosis and necrosis. Basic Neurochemistry 7th ed. G. Siegel, R. W. Albers, S. Brady, D. Price, eds., London, Elsevier.

    Google Scholar 

  • Moriguchi, T., and Salem, N. Jr., 2003, Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J. Neurochem. 87:297–309.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer, M., Connor, W. E., Van Petten, C., and Barstad, L., 1984, Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73:272–276.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L., and Luck, S., 1986, Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. U. S. A. 83:4021–4025.

    Article  PubMed  CAS  Google Scholar 

  • Nourooz-Zadeh, J., Liu, E. H. C., Yhlen, B., Änggåd, E. E., and Halliwell, B., 1999, F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J. Neurochem. 72:734–740.

    Article  PubMed  CAS  Google Scholar 

  • Organisciak, D. T., Darrow, R. M., Jiang, Y. L., and Blanks, J. C., 1996, Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest. Ophthalmol. Vis. Sci. 37:2243–2257.

    PubMed  CAS  Google Scholar 

  • Osborne, N. N., Cazevieillem C., Pergandem G., and Wood, J. P., 1997, Induction of apoptosis in cultured human retinal pigment epithelial cells is counteracted by flupirtine. Invest. Ophthalmol. Vis. Sci. 38:1390–1400.

    PubMed  CAS  Google Scholar 

  • Politi, L. E., Rotstein, N. P., and Carri, N. G., 2001, Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 42:3008–3015.

    PubMed  CAS  Google Scholar 

  • Radu, R. A., Mata, N. L., Nusinowitzm S., Lium X., Sieving, P. A., and Travis, G. H., 2003, Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc. Natl. Acad. Sci. USA 100:4742–4747.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, T. S., and Bazan, N. G., 1984, Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in retina. Curr. Eye. Res. 3:1225–1232.

    PubMed  CAS  Google Scholar 

  • Roberts, L. J. 2nd, Montine, T. J., Markesbery, W. R., Tapper, A. R., Hardy, P., Chemtob, S., Dettbarn, W. D., and Morrow, J. D., 1998, Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.

    Article  PubMed  CAS  Google Scholar 

  • Rotstein, N. P., Politi, L. E., German, O. L., and Girotti, R., 2003, Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 44:2252–2259.

    Article  PubMed  Google Scholar 

  • Salem, N. Jr, Kim, H. Y., and Yergey, J. A., 1986, Docoshexaenoic acid: membrane function and metabolism. The Health Effects of Polyunsaturated Fatty Acids in Seafoods, A. P. Simopoulos, R. R. Kifer, and R. Martin, eds., Academic Press, New York, NY, pp. 263–317.

    Google Scholar 

  • Salem, N. Jr., Litman, B., Kim, H. Y., and Gawrisch, K., 2001, Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 36:945–959.

    Article  PubMed  CAS  Google Scholar 

  • Scott, B. L., and Bazan, N. G., 1989, Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. U. S. A. 86:2903–2907.

    Article  PubMed  CAS  Google Scholar 

  • Sieving, P. A., Chaudhry, P., Kondo, M., Provenzano, M., Wu, D., Carlson, T. J., Bush, R. A., and Thompson, D. A., 2001, Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc. Natl. Acad. Sci. USA 98:1835–1840.

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos, A. P., Leaf, A., and Salem, N. Jr., 1999, Workshop on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. J. Am. Coll. Nutr. 18:487–489.

    PubMed  CAS  Google Scholar 

  • Sparrow, J. R., and Cai, B., 2001, Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest. Ophthalmol. Vis. Sci. 42:1356–1362.

    PubMed  CAS  Google Scholar 

  • Sparrow, J. R., Vollmer-Snarr, H. R., Zhou, J., Jang, Y. P., Jockusch, S., Itagaki, Y., and Nakanishi, K., 2003, A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278:18207–18213.

    Article  PubMed  CAS  Google Scholar 

  • Stinson, A. M., Wiegand, R. D., and Anderson, R. E., 1991, Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 32:2009–2017.

    PubMed  CAS  Google Scholar 

  • Weisinger, H. S., Armitage, J. A., Jeffrey, B. G., Mitchell, D. C., Moriguchi, T., Sinclair, A. J., Weisinger, R. S., and Salem, N. Jr., 2002, Retinal sensitivity loss in third-generation n-3 PUFA-deficient rats. Lipids. 37:759–765.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, T. G., Benolken, R. M., and Anderson, R. E., 1975, Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science. 188:1312–1314.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand, R. D., and Anderson, R. E., 1983, Phospholipid molecular species of frog rod outer segment membranes. Exp. Eye Res. 37:159–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Bazan, N.G. (2006). Survival Signaling in Retinal Pigment Epithelial Cells in Response to Oxidative Stress: Significance in Retinal Degenerations. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 572. Springer, Boston, MA. https://doi.org/10.1007/0-387-32442-9_74

Download citation

  • DOI: https://doi.org/10.1007/0-387-32442-9_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28464-4

  • Online ISBN: 978-0-387-32442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics