Skip to main content

Making PCR a Normal Routine of the Food Microbiology Lab

  • Chapter
Book cover PCR Methods in Foods

Part of the book series: Food Microbiology and Food Safety ((FMFS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 2002. Microbiology of food and animal feeding stuffs—Protocol for the validation of alternative methods (EN ISO/FIDS 16140). European Committee for Standardization, AFNOR, Paris, France.

    Google Scholar 

  2. Anonymous. 2002b. AFNOR Certificate QUA-18/3-11/02: Dupont Qualicon BAX® system PCR assay for screening Salmonella. www.afnor.fr/portail.asp.

    Google Scholar 

  3. Anonymous. 2002c. BAX® system with automated detection PCR assay for screening for Salmonella. www.aoac.org/testkits/testedmethods.html.

    Google Scholar 

  4. Anonymous. 2002d. BAX® system with automated detection PCR assay for screening for L. monocytogenes. www.aoac.org/testkits/testedmethods.html.

    Google Scholar 

  5. Anonymous. 2003a. Evaluation of the BAX® system for the detection of Salmonella in selected foods (DuPont Qualicon, Inc.; Willmington, DE). www.aoac.org/vmeth/newsmtd.htm#faoma.

    Google Scholar 

  6. Anonymous. 2003b. FSIS procedure for the use of the BAX® system PCR assay for screening Salmonella in raw meat, carcass sponge samples, whole bird rinses, readyto-eat meat and poultry products and pasteurized egg products. www.fsis.usda.gov/ophs/microlab/mlg4c01.pdf.

    Google Scholar 

  7. Anonymous. 2003c. NordVal Certificate 2003-20-5408-00023: Dupont Qualicon BAX® system PCR assay for screening Salmonella. www.nmkl.org/NordVal/NordVal.htm.

    Google Scholar 

  8. Anonymous. 2003d. Roche Diagnostics LightCycler® foodproof Salmonella detection kit for Salmonella spp. in combination with ShortPrep foodproof I Kit. www.aoac.org/testkits/testedmethods.html

    Google Scholar 

  9. Anonymous. 2004a. BAX® system PCR assay for screening E. coli O157:H7 kit. www.aoac.org/testkits/testedmethods.html.

    Google Scholar 

  10. Anonymous. 2004b. Roche/BIOTECON diagnostics LightCycler® Listeria monocytogenes detection systems in combination with the Listeria ShortPrep foodproof® II kit. www.aoac.org/testkits/testedmethods.html.

    Google Scholar 

  11. Anonymous. 2005. FSIS procedure for the use of Listeria monocytogenes BAX® screening test. www.fsis.usda.gov/Ophs/Microlab/Mlg_8A_01.pdf.

    Google Scholar 

  12. Bhagwat, A.A. 2003. Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 84:217–224.

    CAS  Google Scholar 

  13. Borst, A., A.T. Box, and A.C. Fluit. 2004. False-positive results and contamination in nucleic-acid amplification assays: Suggestions for a “prevent and destroy” strategy. Eur. J. Clin. Microbiol. Infect. Dis. 23:289–299.

    Article  CAS  Google Scholar 

  14. Coquard, D., A. Exinger, and J.M. Jeltsch. 1999. Routine detection of Salmonella species in water: Comparative evaluation of the ISO and PROBELIA polymerase chain reaction methods. J. AOAC Int. 82:871–876.

    CAS  Google Scholar 

  15. Cui, S., C.M. Schroeder, D.Y. Zhang, and J. Meng. 2003. Rapid sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. J. Appl. Microbiol. 95:129–134.

    Article  CAS  Google Scholar 

  16. Englen, M.D. and P.J. Fedorka-Cray. 2002. Evaluation of commercial diagnostic PCR for the identification of Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 55:353–356.

    Article  Google Scholar 

  17. Erlandsson, A., A. Backman, E. Tornqvist, and P. Olsen. 1997. PCR assay or culture for diagnosis of Bordetella pertussis in the routine diagnostic laboratory? J. Infect. 35:221–224.

    Article  CAS  Google Scholar 

  18. Fach, P., F. Dilasser, J. Grout, and J. Tache. 1999. Evaluation of a polymerase chain reaction-based test for detecting Salmonella spp. in food samples: Probleia Salmonella spp. J. Food Prot. 62:1387–1393.

    CAS  Google Scholar 

  19. Herrera-Leon, S., J.R. McQuiston, M.A. Usera, P.I. Fields, J. Garaizar, and M.A. Echeita. 2004. Multiplex PCR for distinguishing the most common phase-1 flagellar antigens of Salmonella spp. J. Clin. Microbiol. 42:2581–2586.

    Article  CAS  Google Scholar 

  20. Hochberg, A.M., A. Roering, V. Gangar, M. Curiale, and W.M. Barbour. 2001. Sensitivity and specificity of the BAX for screening/Listeria monocytogenes assay: Internal validation and independent laboratory study. J. AOAC Int. 84:1087–1097.

    CAS  Google Scholar 

  21. Hong, Y., T. Liu, C. Hofacre, M. Maier, S. Ayers, D.G. White, L. Wang, and J. J. Maurer. 2003. A restriction fragment length polymorphism based polymerase chain reaction as an alternative to serotyping for identifying Salmonella serotypes. Avian Dis. 47:387–395.

    Article  Google Scholar 

  22. Hoorfar, J., N. Cook, B. Malorny, M. Wagner, M.D. De, A. Abdulmawjood, and P. Fach. 2003. Making internal amplification control mandatory for diagnostic PCR. J. Clin. Microbiol. 41:5835.

    Article  Google Scholar 

  23. Hoorfar, J., N. Cook, B. Malorny, M. Wagner, M.D. De, A. Abdulmawjood, and P. Fach. 2004. Diagnostic PCR: Making internal amplification control mandatory. Lett. Appl. Microbiol. 38:79–80.

    Article  CAS  Google Scholar 

  24. Hoorfar, J. and N. Cook. 2003. Critical aspects of standardization of PCR. In K. Sachese and J. Frey (eds.), PCR Detection of Microbial Pathogens: Methods in Molecular Microbiology, Vol. 216, pp. 51–64.

    Google Scholar 

  25. Josefsen, M.H., S.T. Lambertz, S. Jensen, and J. Hoorfar. 2003. Food-PCR. Validation and standardization of diagnostic PCR for detection of Yersinia enterocolitica and other foodborne pathogens. Adv. Exp. Med. Biol. 529:443–449.

    Google Scholar 

  26. Keramas, G., D.D. Bang, M. Lund, M. Madsen, H. Bunkenborg, P. Telleman, and C.B. Christensen. 2004. Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces. J. Clin. Microbiol. 42:3985–3991.

    Article  CAS  Google Scholar 

  27. Liming, S.H. and A.A. Bhagwat. 2004. Application of a molecular beacon-real-time PCR technology to detect Salmonella species contaminating fruits and vegetables. Int. J. Food Microbiol. 95:177–187.

    Article  CAS  Google Scholar 

  28. Liu, T., K. Liljebjelke, E. Bartlett, C.L. Hofacre, S. Sanchez, and J.J. Maurer. 2002. Application of nested PCR to detection of Salmonella in poultry environments. J. Food Prot. 65:1227–1232.

    CAS  Google Scholar 

  29. Lo, Y.M. 1998. Methods in Molecular Medicine: Clinical Applications of PCR, Vol. 16. Humana Press Inc., Totowa, NJ.

    Google Scholar 

  30. Loeffler, J., K. Schmidt, H. Hebart, U. Schumacher, and H. Einsele. 2002. Automated extraction of genomic DNA from medically important yeast species and filamentous fungi by using the MagNA pure LC system. J. Clin. Microbiol. 40:2240–2243.

    Article  CAS  Google Scholar 

  31. Luk, J.M., U. Kongmuang, R.S. Tsang, and A.A. Lindberg. 1997. An enzyme-linked immunosorbent assay to detect PCR products of the rfbS gene from serogroup D salmonella: A rapid screening prototype. J. Clin. Microbiol. 35:714–718.

    CAS  Google Scholar 

  32. Macrina, F.L. 1995. Scientific Integrity: An Introductory Text with Cases. ASM Press, Washington, DC.

    Google Scholar 

  33. Malorny, B., E. Paccassoni, P. Fach, C. Bunge, A. Martin, and R. Helmuth. 2004. Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 70:7046–7052.

    Article  CAS  Google Scholar 

  34. Malorny, B., P.T. Tassios, P. Radstrom, N. Cook, M. Wagner, and J. Hoorfar. 2003. Standardization of diagnostic PCR for the detection of foodborne pathogens. Int. J. Food.

    Google Scholar 

  35. Metzger-Boddien, C., A. Bostel, and J. Kehle. 2004. AnDiaTec Salmonella sp. PCRELISA for analysis of food samples. J. Food Prot. 67:1585–1590.

    CAS  Google Scholar 

  36. Nogva, H.K., K. Rudi, K. Naterstad, A. Holck, and D. Lillehaug. 2000. Application of 5’-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Enivorn. Microbiol. 66:4266–4271.

    Article  CAS  Google Scholar 

  37. Riley, L. W. 2004. Molecular epidemiology of infectious diseases: principles and practices. ASM Press, Washington, DC.

    Google Scholar 

  38. Rudi, K., H.K. Hoidal, T. Katla, B.K. Johansen, J. Nordal, and K.S. Jakobsen. 2004. Direct real-time PCR quantification of Campylobacter jejuni in chicken fecal and cecal samples by integrated cell concentration and DNA purification. Appl. Environ. Microbiol. 70:790–797.

    Article  CAS  Google Scholar 

  39. Sails, A.D., A.J. Fox, F.J. Bolton, D.R. Wareing, and D.L. Greenway. 2003. A realtime PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl. Environ. Microbiol. 69:1383–1390.

    Article  CAS  Google Scholar 

  40. Sarkar, G. and S.S. Sommer. 1993. Removal of DNA contamination in polymerase chain reaction reagents by ultraviolet irradiation. Methods Enzymol. 218:381–388.

    Article  CAS  Google Scholar 

  41. Sergeev, N.,M. Distler, S. Courtney, S.F. Al-Khaldi, D. Volokhov, V. Chizhikov, and A. Rasooly. 2004. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens. Bioelectron. 20:684–698.

    Article  CAS  Google Scholar 

  42. Shearer, A.E., C.M. Strapp, and R.D. Joerger. 2001. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., and Listeria monocytogenes on fresh fruits and vegetables. J. Food Prot. 64:788–795.

    CAS  Google Scholar 

  43. Shi, P.Y., E.B. Kauffman, P. Ren, A. Felton, J.H. Tai, A.P. Dupuis, II, S.A. Jones, K.A. Ngo, D.C. Nicholas, J. Maffei, G.D. Ebel, K.A. Bernard, and L.D. Kramer. 2001. High-throughput detection of West Nile virus RNA. J. Clin. Microbiol. 39:1264–1271.

    Article  CAS  Google Scholar 

  44. Silbernagel, K., R. Jechorek, C. Carver, W.M. Barbour, and P. Mrozinski. 2003. Evaluation of the BAX system for detection of Salmonella in selected foods: Collaborative study. J. AOAC Int. 86:1149–1159.

    CAS  Google Scholar 

  45. Uyttendaele, M., K. Vanwildemeersch, and J. Debevere. 2003. Evaluation of realtime PCR vs. automated ELISA and a conventional culture method using a semisolid medium for detection of Salmonella. Lett. Appl. Microbiol. 37:386–391.

    Article  CAS  Google Scholar 

  46. Wellinghausen, N., B. Wirths, A. Essig, and L. Wassill. 2004. Evaluation of the Hyplex Bloodscreen multiplex PCR-enzyme-linked immunosorbent assay system for direct identification of gram-positive cocci and gram-negative bacilli from positive blood cultures. J. Clin. Microbiol. 42:3147–3152.

    Article  CAS  Google Scholar 

  47. Wiedbrauk, D.L. and R.L. Hodinka. 1998. Applications of the polymerase chain reaction. In S. Specter, M. Bendinelli, and H. Friedman (eds.), Rapid Detection of Infectious Agents. Plenum Press, New York.

    Google Scholar 

  48. Wilson, I.G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63:3741–3751.

    CAS  Google Scholar 

  49. Wolk, D.M., S.K. Schneider, N.L. Wengenack, L.M. Sloan, and J.E. Rosenblatt. 2002. Real-time PCR method for detection of Encephalitozoon intestinalis from stool specimens. J. Clin. Microbiol. 40:3922–39288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sanchez, S. (2006). Making PCR a Normal Routine of the Food Microbiology Lab. In: Maurer, J. (eds) PCR Methods in Foods. Food Microbiology and Food Safety. Springer, Boston, MA . https://doi.org/10.1007/0-387-31702-3_4

Download citation

Publish with us

Policies and ethics