Skip to main content

Modeling Problems in Conservation Genetics Using Laboratory Animals Richard Frankham

  • Chapter
Quantitative Methods for Conservation Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology 5:181–190

    Article  Google Scholar 

  • Backus VL, Bryant EH, Hughes CR, Meffert LM (1995) Effect of migration on inbreeding followed by selection on low-founder-number populations: implications for captive breeding. Conservation Biology 9:1216–1224

    Article  Google Scholar 

  • Ballou J, Lacy RC (1995) Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou J, Gilpin M, Foose T. (eds) Population management for survival and recovery: analytical methods and strategies in small population conservation. Columbia University Press, New York, pp 76–111

    Google Scholar 

  • Borlase SC, Loebel DA, Frankham R, Nurthen RK, Briscoe DA, Daggard GE (1993) Modeling problems in conservation genetics using captive Drosophila populations: consequences of equalizing family sizes. Conservation Biology 7:122–131

    Article  Google Scholar 

  • Brakefield PM, Saccheri IJ (1994) Guidelines in conservation genetics and the use of the population cage experiments with butterflies to investigate the effects of genetic drift and inbreeding. In Loeschcke V, Tomiuk J, Jain SK (eds) Conservation genetics. Birkhäuser, Basel, Switzerland, pp 165–179

    Google Scholar 

  • Brewer BA, Lacy RC, Foster ML, Alaks G (1990) Inbreeding depression in insular and central populations of Peromyscus mice. Journal of Heredity 81:257–266

    CAS  PubMed  Google Scholar 

  • Briscoe DA, Malpica JM, Robertson A, Smith GJ, Frankham R, Banks RG, Barker JSF (1992) Rapid loss of genetic variation in large captive populations of Drosophila flies: implications for the genetic management of captive populations. Conservation Biology 6:416–425

    Article  Google Scholar 

  • Briton J, Nurthen RK, Briscoe DA, Frankham R (1994) Modelling problems in conservation genetics using captive Drosophila populations: consequences of harems. Biological Conservation 69:267–275

    Article  Google Scholar 

  • Bulmer MG (1980) The mathematical theory of quantitative genetics. Clarendon Press, Oxford, UK

    Google Scholar 

  • Clayton GA, Robertson A (1957) An experimental check on quantitative genetical theory. II. The long-term effects of selection. Journal of Genetics 55:152–170

    Article  Google Scholar 

  • Clayton GA, Morris JA, Robertson A (1957) An experimental check on quantitative genetical theory. I. Short-term responses to selection. Journal of Genetics 55:131–151

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • East EM (1916) Studies on size inheritance in Nicotiana. Genetics 1:164–176

    PubMed  CAS  Google Scholar 

  • Eisen EJ (1975) Population size and selection intensity effects on long-term selection response in mice. Genetics 79:305–323

    CAS  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th ed. Longman, Harlow, UK

    Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52:399–433

    Google Scholar 

  • Forney KA, Gilpin ME (1989) Spatial structure and population extinction: a study with Drosophila flies. Conservation Biology 3:45–51

    Article  Google Scholar 

  • Frankham R (1980) Origin of genetic variation in selection lines. In: Robertson A (ed) Selection experiments in laboratory and domestic animals. Commonwealth Agricultural Bureaux, Farnham Royal, UK, pp 56–68

    Google Scholar 

  • Frankham R (1982) Contributions of Drosophila research to quantitative genetics and animal breeding. Proceeding of the 2nd World Congress on Genetics Applied to Livestock Production 5:43–56

    Google Scholar 

  • Frankham R (1983) Origin of genetic variation in selection lines. Proceedings of the Thirty-Second National Breeders’ Roundtable, St. Louis, Missouri, pp 1–18

    Google Scholar 

  • Frankham R (1992) Integrating technologies into animal breeding programmes. In: Moore HDM, Holt WV, Mace GM (eds) Biotechnology and the conservation of genetic diversity. Symposia of the Zoological Society of London 64. Clarendon Press, Oxford, UK, pp 207–221

    Google Scholar 

  • Frankham R (1995a) Effective population size / adult population size ratios in wildlife: a review. Genetical Research 66:95–107

    Google Scholar 

  • Frankham R (1995b) Conservation genetics. Annual Review of Genetics 29:305–327

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (1995c) Inbreeding and extinction. Conservation Biology 9:792–799

    Article  Google Scholar 

  • Frankham R (1995d) Genetic management of captive populations for reintroduction. In: Serena M (ed) Reintroduction biology of Australian and New Zealand fauna. Surrey Beatty and Sons, Chipping Norton, NSW, Australia pp 31–34

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology 10:1500–1508

    Article  Google Scholar 

  • Frankham R, Loebel DA (1992) Modeling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo Biology 11:333–342

    Article  Google Scholar 

  • Frankham R, Nurthen RK (1981) Forging links between population and quantitative genetics. Theoretical and Applied Genetics 59:251–263

    Google Scholar 

  • Frankham R, Briscoe DA, Nurthen RK (1978) Unequal crossing over at the rRNA locus as a source of quantitative genetic variation. Nature 272:80–81

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Smith GJ, Briscoe DA (1993) Effects on heterozygosity and reproductive fitness of inbreeding with and without selection on fitness in Drosophila melanogaster. Theoretical and Applied Genetics 86:1023–1027

    Article  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–140

    Google Scholar 

  • Fuerst PA, Maruyama T (1986) Considerations on the conservation of alleles and of genic heterozygosity in small managed populations. Zoo Biology 5:171–179

    Article  Google Scholar 

  • Gilligan DM, Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (1997) Is mutation accumulation a threat to the survival of endangered populations? Conservation Biology 11:1235–1241

    Article  Google Scholar 

  • Hazel LN, Lush JL (1942) The efficiency of three methods of selection. Journal of Heredity 33:393–399

    Google Scholar 

  • Hedrick PW (1994) Purging inbreeding depression and the probability of extinction: fullsib mating. Heredity 73:363–372

    PubMed  Google Scholar 

  • Hill WG (1981) Assessment of breeding value in selection programs. Proceeding of the Second Conference of the Australian Association of Animal Breeding and Genetics, University of Melbourne, Australia, pp 227–236

    Google Scholar 

  • Hill WG (1982) Predictions of response to artificial selection from new mutations. Genetical Research 40:255–278

    PubMed  Google Scholar 

  • Hollingdale B (1971) Analyses of some genes from abdominal bristle number selection lines in Drosophila melanogaster. Theoretical and Applied Genetics 41:292–301

    Article  Google Scholar 

  • Jimenez JA, Hughes KA, Alaks G, Graham L, Lacy RC (1994) An experimental study of inbreeding depression in a natural habitat. Science 216:271–273

    Google Scholar 

  • Jones LP, Frankham R, Barker JSF (1968) The effects of population size and selection intensity in selection for a quantitative character in Drosophila. II. Long-term response to selection. Genetical Research 12:249–266

    CAS  PubMed  Google Scholar 

  • Kimura M, Crow JF (1963) On the maximum avoidance of inbreeding. Genetical Research 4:399–415

    Google Scholar 

  • Lande R (1995) Mutation and conservation. Conservation Biology 9:782–791

    Article  Google Scholar 

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, UK, pp 87–123

    Google Scholar 

  • Latter BDH (1964) Selection for a threshold character in Drosophila. I. An analysis of phenotypic variance on the underlying scale. Genetical Research 5:198–210

    Google Scholar 

  • Leberg PL (1992) Effects of a population bottleneck on genetic diversity as measured by allozyme electrophoresis. Evolution 46:474–494

    Article  Google Scholar 

  • Loebel DA, Nurthen RK, Frankham R, Briscoe DA, Craven D (1992) Modeling problems in conservation genetics using captive Drosophila populations: consequences of equalizing founder representation. Zoo Biology 11:319–332

    Article  Google Scholar 

  • Lopez-Fanjul C, Caballero A (1990) The effect of artificial selection on new mutations for a quantitative trait. Proceedings of the 4th World Congress on Genetics Applied to Livestock Production 13:210–218

    Google Scholar 

  • Lush JL (1945) Animal breeding plans, 3rd ed. Iowa State College Press, Ames, IA

    Google Scholar 

  • Margan SH, Nurthen RK, Montgomery ME, Woodworth LM, Briscoe DA, Frankham R (1998) Single large or several small? Population fragmentation in the captive management of endangered species. Zoo Biology 17:467–480

    Article  Google Scholar 

  • Miller PS, Hedrick PW (1993) Inbreeding and fitness in captive populations: Lessons from Drosophila. Zoo Biology 12:333–351

    Article  Google Scholar 

  • Mina NS, Sheldon BL, Yoo BH, Frankham R (1991) Heterozygosity at protein loci in inbred and outbred lines of chickens. Poultry Science 70:864–872

    Google Scholar 

  • Montgomery ME, Ballou JD, Nurthen RK, Briscoe DA, Frankham R (1997) Minimizing kinship in captive breeding programs. Zoo Biology 16:377–389

    Article  Google Scholar 

  • Pray, LA, Schwartz JM, Goodnight CJ, Stevens L (1994) Environmental dependency of inbreeding depression implications for conservation. Conservation Biology 8:562–568

    Article  Google Scholar 

  • Ralls K, Ballou J (1983) Extinction: lessons from zoos. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park, CA, pp 164–184

    Google Scholar 

  • Ralls K, Meadows R (1993) Breeding like flies. Nature 361:689–690

    Article  CAS  PubMed  Google Scholar 

  • Ralls K, Ballou J, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conservation Biology 2:185–193

    Article  Google Scholar 

  • Reeve ECR, Robertson FW (1954) Studies in quantitative inheritance. VI. Sternite chaetae number in Drosophila: a metameric quantitative character. Zeitschrift für induktive Abstammungs-und Vererbungslehre 6:269–288

    Article  Google Scholar 

  • Robertson A (1960) A theory of limits in artificial selection. Proceedings of the Royal Society of London 153B:234–249

    Article  Google Scholar 

  • Rumball W, Franklin IR, Frankham R, Sheldon BL (1994) Decline in heterozygosity under full sib and double first cousin inbreeding in Drosophila melanogaster. Genetics 136:1039–1049

    CAS  PubMed  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Soulé ME (1980) Thresholds for survival: maintaining fitness and evolutionary potential. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 151–169

    Google Scholar 

  • Spielman D, Frankham R (1992) Modeling problems in conservation genetics using captive Drosophila populations: improvement of reproductive fitness due to immigration of one individual into small partially inbred populations. Zoo Biology 11:343–351

    Article  Google Scholar 

  • Templeton AR, Read B (1983) The elimination of inbreeding depression in a captive herd of Speke’s Gazelle. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park, CA, pp 241–261

    Google Scholar 

  • Templeton AR, Read B (1984) Factors eliminating inbreeding depression in a captive herd of Speke’s Gazelle (Gazella spekei). Zoo Biology 3:177–199

    Article  Google Scholar 

  • Vrijenhoek RC (1994) Genetic diversity and fitness in small populations. In: Loeschcke V, Tomiuk J, Jain SK (eds) Conservation genetics. Birkhäuser, Basel, Switzerland, pp 37–53

    Google Scholar 

  • Woodworth LM (1996) Population size in captive breeding programs. PhD thesis, Macquarie University, Sydney, Australia

    Google Scholar 

  • Woodworth LM, Montgomery ME, Nurthen RK, Briscoe DA, Frankham R (1994) Modelling problems in conservation genetics using Drosophila: consequences of fluctuating population sizes. Molecular Ecology 3:393–399

    CAS  PubMed  Google Scholar 

  • Wright JW, Treadwell M, Nurthen RK, Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (in press) Modelling problems in conservation genetics using Drosophila: purging is ineffective in reducing genetic load. Biodiversity and Conservation

    Google Scholar 

  • Wright S (1921) Systems of mating. I. The biometric relations between parent and off-spring. Genetics 6:111–123

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Wright S (1977) Evolution and the genetics of populations, vol 3. Experimental results and evolutionary deductions. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Yoo BH (1980) Long-term selection for a quantitative character in large replicate populations of Drosophila melanogaster. II Lethals and visible mutants with large effects. Genetical Research 35:19–31

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Frankham, R. (2000). Modeling Problems in Conservation Genetics Using Laboratory Animals Richard Frankham. In: Quantitative Methods for Conservation Biology. Springer, New York, NY. https://doi.org/10.1007/0-387-22648-6_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-22648-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95486-8

  • Online ISBN: 978-0-387-22648-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics