Skip to main content

Tyrosine Fluorescence and Phosphorescence from Proteins and Polypeptides

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 3))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Longworth, Luminescence of polypeptides and proteins, in: Excited States of Proteins and Nucleic Acids R. F. Steiner I. Weinryb, eds. pp. 319–484, Plenum Press, New York (1971).

    Google Scholar 

  2. S. V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids, Plenum Press, New York (1967).

    Google Scholar 

  3. R. W. Cowgill, Tyrosyl fluorescence in proteins and model peptides, Biochemical Fluorescence: Concepts 2 R. F. Chen and H. Edelhoch, eds.), pp. 441–486, Marcel Dekker, New York (1976).

    Google Scholar 

  4. D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids-II. Tyrosine and its simple derivatives, Photochem. Photobiol. 39, 563–575 (1984).

    CAS  Google Scholar 

  5. P. Debye J. O. Edwards, A note on the phosphorescence of proteins, Science 116, 143–144 (1952).

    CAS  Google Scholar 

  6. R. H. Steele and A. Szent-Gyorgyi, On excitation of biological substances, Proc. Natl. Acad. Sci. U.S.A. 43, pp 477–491 (1957).

    CAS  Google Scholar 

  7. G. Weber, Rotational Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8, 415–457 (1953).

    CAS  PubMed  Google Scholar 

  8. D. Duggan and S. Udenfriend, The spectrofluorometric determination of tryptophan in plasma and of tryptophan and tyrosine in protein hydrolysates, J. Biol. Chem. 223, 313–319 (1956).

    CAS  PubMed  Google Scholar 

  9. V. G. Shore and A. B. Pardee, Fluorescence of some proteins, nucleic acids and related compounds, Arch. Biochem. Biophys. 60, 100–107 (1956).

    Article  CAS  PubMed  Google Scholar 

  10. S. V. Konev, Fluorescence spectra and spectra of action of fluorescence in proteins, Dokl. Akad. Nauk. SSSR 116, 594–597 (1957).

    CAS  Google Scholar 

  11. Y. A. Vladimirov, Fluorescence of aromatic amino acids, Dokl. Akad. Nauk. SSSR 116, 780–783 (1957).

    CAS  Google Scholar 

  12. F. W. J. Teale and G. Weber, Ultraviolet fluorescence of the aromatic amino acids, Biochem. J. 65, 476–482 (1957).

    CAS  PubMed  Google Scholar 

  13. G. H. Beaven and E. R. Holiday, Ultraviolet absorption spectra of proteins and amino acids, Adv. Protein Chem. 7, 319–386 (1952).

    CAS  PubMed  Google Scholar 

  14. D. B. Wetlaufer, Ultraviolet spectra of proteins and amino acids, Adv. Protein Chem. 17, 303–390 (1962).

    CAS  Google Scholar 

  15. T. M. Hooker and J. A. Schellman, Optical activity of aromatic chromophores. I. o, m, and p-Tyrosine, Biopolymers 9, 1319–1348 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. J. R. Platt, Classification of spectra of cata-condensed hydrocarbons, J. Phys. Chem. 17, 484–495 (1949).

    CAS  Google Scholar 

  17. G. C. Pimentel, Hydrogen bonding and electronic transitions: The role of the Franck-Condon principle, J. Am. Chem. Soc. 79, 3323–3326 (1957).

    Article  CAS  Google Scholar 

  18. G. J. Brealey and M. Kasha, The role of hydrogen bonding in the n → π* blue-shift phenomenon, J. Am. Chem. Soc. 77, 4462–4468 (1955).

    Article  CAS  Google Scholar 

  19. D. A. Chignell and W. B. Gratzer, Solvent effects on aromatic chromophores and their relation to ultraviolet difference spectra of proteins, J. Phys. Chem. 72, 2934–2941 (1968).

    Article  CAS  Google Scholar 

  20. S. Nagakura and M. Gouterman, The effect of H bonding on the near ultraviolet absorption of naphthol, J. Phys. Chem. 26, 881–886 (1957).

    CAS  Google Scholar 

  21. C. A. Hasselbacher, E. Waxman, L. T. Galati, P. B. Contino, J. B. A. Ross, and W. R. Laws, Investigation of hydrogen bonding and proton transfer of aromatic alcohols in non-aqueous solvents by steady-state and time-resolved fluorescence, J. Phys. Chem. 95, 2995–3005 (1991).

    Article  CAS  Google Scholar 

  22. K. J. Willis and A. G. Szabo, The fluorescence decay kinetics of tyrosinate and tyrosine hydrogen bonded complexes, J. Phys. Chem. 95, 1585–1589 (1991).

    Article  CAS  Google Scholar 

  23. I. Weinryb and R. F. Steiner, The luminescence of the aromatic amino acids, in: Excited States of Proteins and Nucleic Acids R. F. Steiner and I. Weinryb, eds.), pp. 277–318, Plenum Press, New York (1971).

    Google Scholar 

  24. K. W. Rousslang, Optical detection of magnetic resonance in aromatic amino acids and proteins, Dissertation, University of Washington, Seattle, Washington (1976).

    Google Scholar 

  25. D. M. Rayner, D. T. Krajcarski, and A. G. Szabo, Excited-state acid-base equilibrium of tyrosine, Can. J. Chem. 56, 1238–1245 (1978).

    CAS  Google Scholar 

  26. W. R. Laws and L. Brand, Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83, 795–802 (1979).

    Article  CAS  Google Scholar 

  27. C. A. Parker, Photoluminescence of Solutions, Elsevier, New York (1968).

    Google Scholar 

  28. S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey (1969).

    Google Scholar 

  29. B. Smaller, E. C. Avery, and J. R. Remko, Triplet-state zero-field-splitting correlations in substituted molecules, J. Chem. Phys. 46, 3976–3983 (1967).

    Article  CAS  Google Scholar 

  30. M. Ptak and P. Douzou, Examination of optically excited amino-acids by electron spin resonance at very low temperature, Nature 199, 1092 (1963).

    CAS  PubMed  Google Scholar 

  31. T. Shiga and L. H. Piette, Triplet state studies of flavins by electron paramagnetic resonance-II, Photochem. Photobiol. 3, 223–230 (1964).

    CAS  Google Scholar 

  32. J. E. Maling, K. Rosenheck, and M. Weissbluth, Triplet ESR in L-tyrosine, Photochem. Photobiol. 4, 241–249 (1965).

    CAS  Google Scholar 

  33. J. Zuclich, Triplet-state electron paramagnetic resonance of the aromatic amino acids and proteins, J. Chem. Phys. 52, 3586–3591 (1970).

    CAS  PubMed  Google Scholar 

  34. J. Zuclich, D. Schweitzer, and A. H. Maki, Optically detected magnetic resonance of the tryptophan phosphorescent state in proteins, Photochem. Photobiol. 18, 161–168 (1973).

    CAS  Google Scholar 

  35. A. L. Kwiram, Optical detection of magnetic resonance in molecular triplet states, in: MTP International Review of Science, Ser. 1, Physical Chemistry 4 C. A. McDowell, ed. pp. 271–315, University Park Press, Baltimore (1972).

    Google Scholar 

  36. T.-T. Co, J. Hoover, and A. H. Maki, Dynamics of the tyrosine triplet state from magnetic resonance saturated phosphorescence decay measurements, Chem. Phys. Lett. 27, 5–9 (1974).

    Article  CAS  Google Scholar 

  37. K. W. Rousslang and A. L. Kwiram, Triplet state decay and spin-lattice relaxation rate constants in tyrosinate and tryptophan, Chem. Phys. Lett. 39, 226–230 (1976).

    CAS  Google Scholar 

  38. W. R. Laws, J. B. A. Ross, H. R. Wyssbrod, J. M. Beechem, L. Brand, and J. C. Sutherland, Time-resolved fluorescence and 1H MR studies of tyrosine and tyrosine analogues: Correlation of NMR-determined rotamer populations and fluorescence kinetics, Biochemistry 25, 599–607 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. J. P. Greenstein and M. Winitz, Chemistry of the Amino Acids, p. 498, Wiley, New York (1961).

    Google Scholar 

  40. J. Feitelson, On the mechanism of fluorescence quenching. Tyrosine and similar compounds, J. Phys. Chem. 68, 391–397 (1964).

    CAS  Google Scholar 

  41. P. Gauduchon and P. Wahl, Pulse fluorimetry of tyrosyl peptides, Biophys. Chem. 8, 87–104 (1978).

    Article  CAS  PubMed  Google Scholar 

  42. R. W. Cowgill, Fluorescence and protein structure X. Reappraisal of solvent and structural effects, Biochim. Biophys. Acta 133, 6–18 (1967).

    CAS  PubMed  Google Scholar 

  43. J. E. Tournon, E. Kuntz, and M. A. El Bayoumi, Fluorescence quenching in phenylalanine and model compounds, Photochem. Photobiol. 16, 425–433 (1972).

    CAS  PubMed  Google Scholar 

  44. I. H. Munro and N. Schwentner, Time resolved spectroscopy using synchrotron radiation, Nucl. Instrum. Methods 208, 819–834 (1983).

    CAS  Google Scholar 

  45. J. M. Beechem, J. R. Knutson, J. B. A. Ross, B. W. Turner, and L. Brand, Global resolution of heterogeneous decay by phase/modulation fluorometry: Mixtures and proteins, Biochemistry 22, 6054–6058 (1983).

    Article  CAS  Google Scholar 

  46. J. R. Knutson, J. M. Beechem, and L. Brand, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett. 102, 501–507 (1983).

    Article  CAS  Google Scholar 

  47. J. B. A. Ross, W. R. Laws, J. C. Sutherland, A. Buku, P. G. Katsoyannis, I. L. Schwartz, and H. R. Wyssbrod, Linked-function analysis of fluorescence decay kinetics: Resolution of side-chain rotamer populations of a single aromatic amino acid in small polypeptides, Photochem. Photobiol. 44, 365–370 (1986).

    CAS  PubMed  Google Scholar 

  48. P. B. Contino and W. R. Laws, Rotamer-specific fluorescence quenching in tyrosinamide: Dynamic and static interactions, J. Fluorescence 1, 5–13 (1991).

    Article  CAS  Google Scholar 

  49. R. S. Becker, Theory and Interpretation of Fluorescence and Phosphorescence, Wiley-Interscience, New York (1969).

    Google Scholar 

  50. K. W. Rousslang, unpublished results.

    Google Scholar 

  51. T. Förster, Fluoreszenz Organischer Verbindungen, Vandenhoeck and Ruprecht, Göttingen (1951)

    Google Scholar 

  52. D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836–850 (1953).

    Article  CAS  Google Scholar 

  53. R. E. Dale, J. Eisinger, and W. E. Blumberg, The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer, Biophys. J. 26, 161–194 (1979).

    CAS  PubMed  Google Scholar 

  54. J. Eisinger, B. Feuer, and A. A. Lamola, Intramolecular singlet excitation transfer. Applications to polypeptides, Biochemistry 8, 3908–3915 (1969).

    CAS  PubMed  Google Scholar 

  55. J. Eisinger, Intramolecular energy transfer in adrenocorticotropin, Biochemistry 8, 3902–3908 (1969).

    CAS  PubMed  Google Scholar 

  56. M. Kupryszewska, I. Gryczynski, and A. Kawski, Intramolecular donor-acceptor separations in methionine-and leucine-enkephalin estimated by long-range radiationless transfer of singlet excitation energy, Photochem. Photobiol. 36, 499–502 (1982).

    CAS  Google Scholar 

  57. K. W. Rousslang and A. L. Kwiram, Triplet-triplet energy transfer in the tryptophyl-tyrosinate dipeptide, Chem. Phys. Lett. 39, 231–235 (1976).

    CAS  Google Scholar 

  58. M. A. El-Sayed, Optical pumping of the lowest triplet state and multiple resonance optical techniques in zero field, J. Chem. Phys. 54, 680–691 (1971).

    Article  CAS  Google Scholar 

  59. J. B. A. Ross, K. W. Rousslang, A. G. Motton, and A. L. Kwiram, Base interactions in the triplet states of NAD+ and NADH, Biochemistry 18, 1808–1813 (1979).

    Article  CAS  PubMed  Google Scholar 

  60. M. R. Eftink and C. A. Ghiron, Fluorescence quenching studies with proteins, Anal. Biochem. 114, 199–227 (1981).

    Article  CAS  PubMed  Google Scholar 

  61. N. S. Kosower and E. M. Kosower, The glutathione-glutathione disulfide system, Free Radicals Biol. 2, 55–84 (1976).

    CAS  Google Scholar 

  62. D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids-III.Cystine and its simple derivatives, Photochem. Photobiol. 39, 577–583 (1984).

    CAS  Google Scholar 

  63. A. Shafferman and G. Stein, The effect of aromatic amino acids on the photochemistry of a disulfide: Energy transfer and reaction with hydrated electrons, Photochem. Photobiol. 20, 399–406 (1974).

    CAS  Google Scholar 

  64. R. W. Cowgill, Fluorescence and protein structure XI. Fluorescence quenching by disulfide and sulfhydryl groups, Biochim. Biophys. Acta 140, 37–44 (1967).

    CAS  Google Scholar 

  65. V. O. Stern and M. Volmer, On the quenching-time of fluorescence, Physik. Zeitschr. 20, 183–188 (1919).

    CAS  Google Scholar 

  66. W. R. Laws and P. B. Contino, Fluorescence quenching studies: Analysis of non-linear Stern-Volmer data, Methods Enzymol. 210 (in press).

    Google Scholar 

  67. A. Follenius and D. Gerard, Acrylamide fluorescence quenching applied to tyrosyl residues in proteins, Photochem. Photobiol. 38, 373–376 (1983).

    CAS  PubMed  Google Scholar 

  68. J. B. A. Ross, W. R. Laws, A. Buku, J. C. Sutherland, and H. R. Wyssbrod, Time-resolved fluorescence and 1H NMR studies of tyrosyl residues in oxytocin and small peptides: Correlation of NMR-determined conformations of tyrosyl residues and fluorescence decay kinetics, Biochemistry 25, 607–612 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. J. K. Swadesh, P. W. Mui, and H. A. Scheraga, Thermodynamics of the quenching of tyrosyl fluorescence by dithiothreitol, Biochemistry 26, 5761–5769 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. M. V. Smoluchowski, Mathematical theory of the kinetics of the coagulation of colloidal solutions, Z. Phys. Chem. 92, 129–168 (1917).

    Google Scholar 

  71. A. Örstan, M. F. Lulka, B. Eide, P. H. Petra, and J. B. A. Ross, The steroid-binding site of human and rabbit sex steroid-binding protein of plasma: Fluorescence characterization with equilenin, Biochemistry 25, 2686–2692 (1986).

    PubMed  Google Scholar 

  72. E. Casali, P. H. Petra, and J. B. A. Ross, Fluorescence investigation of the sex steroid binding protein of rabbit serum: Steroid and subunit dissociation, Biochemistry 29, 9334–9343 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. N. Mataga and Y. Kaifu, Intermolecular proton transfer in the excited hydrogen-bonded complex in nonpolar solvent and fluorescence quenching due to hydrogen bonding, J. Phys. Chem. 36, 2804–2805 (1962).

    CAS  Google Scholar 

  74. A. Matsuzaki, S. Nagakura, and K. Yoshihara, Interactions of β-naphthol and β-naphthylamine in their excited singlet states with triethylamine, Bull. Chem. Soc. Jpn. 47, 1152–1157 (1974).

    CAS  Google Scholar 

  75. Methods Enzymol. 210 (in press).

    Google Scholar 

  76. D. James and W. R. Ware, A fallacy in the interpretation of fluorescence decay parameters, Chem. Phys. Lett. 120, 455–459 (1985).

    CAS  Google Scholar 

  77. J. R. Alcala, E. Gratton, and F. G. Prendergast, Interpretation of fluorescence decays in proteins using continuous lifetime distributions, Biophys. J. 51, 925–936 (1987).

    CAS  PubMed  Google Scholar 

  78. H. Szmacinski, R. Jayaweera, H. Cherek, and J. R. Lakowicz, Demonstration of an associated anisotropy decay by frequency-domain fluorometry, Biophys. Chem. 27, 233–241 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. K. J. Willis, A. G. Szabo, J. Drew, M. Zuker, and J. M. Ridgeway, Resolution of heterogeneous fluorescence into component decay-associated excitation spectra, Biophys. J. 57, 183–189 (1990).

    CAS  PubMed  Google Scholar 

  80. C. Helene, T. Montenay-Garestier, and J. L. Dimicoli, Interactions of tyrosine and tyramine with nucleic acids and their components. Fluorescence, nuclear magnetic resonance, and circular dichroism studies, Biochim. Biophys. Acta 254, 349–365 (1971).

    CAS  PubMed  Google Scholar 

  81. O. Shimizu and K. Imakubo, New emission band of tyrosine induced by interaction with phosphate ion, Photochem. Photobiol. 26, 541–543 (1977).

    CAS  Google Scholar 

  82. O. Shimizu, J. Watanabe, and K. Imakubo, Effect of phosphate ion on fluorescence characteristics of tyrosine and its conjugate base, Photochem. Photobiol. 29, 915–919 (1979).

    CAS  Google Scholar 

  83. T. Alev-Behmoaras, J.-J. Toulme, and C. Helene, Quenching of tyrosine fluorescence by phosphate ions: A model study for protein-nucleic acid complexes, Photochem. Photobiol. 30, 533–539 (1979).

    CAS  Google Scholar 

  84. N. C. Verma, Fluorescence fromL-tyrosine and its quenching by phosphate ions and deoxyribonucleic acid, Indian J. Biochem. Biophys. 22, 218–222 (1985).

    CAS  PubMed  Google Scholar 

  85. L. J. Libertini and E. W. Small, Salt induced transitions of chromatin core particles studied by tyrosine fluorescence anisotropy, Nucleic Acids Res. 8, 3517–3534 (1980).

    CAS  PubMed  Google Scholar 

  86. L. J. Libertini and E. W. Small, Effects of pH on low-salt transition of chromatin core particles, Biochemistry 21, 3327–3334 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. I. Ashikawa, Y. Nishimura, M. Tsuboi, K. Watanabe, and K. Iso, Lifetime of tyrosine fluorescence in nucleosome core particles, J. Biochem. (Tokyo) 91, 2047–2055 (1982).

    CAS  Google Scholar 

  88. A. Mozo-Villarias, Fluorescence study of histone tyrosyl residues of DNA, Biochem. Biophys. Res. Commun. 122, 656–661 (1984).

    CAS  PubMed  Google Scholar 

  89. L. J. Libertini and E. W. Small, Effects of pH on the stability of chromatin core particles, Nucleic Acids Res. 12, 4351–4359 (1984).

    CAS  PubMed  Google Scholar 

  90. V. Giancotti, M. Fonda, and C. Crane-Robinson, Tyrosine fluorescence of two tryptophan free proteins: Histones H1 and H5, Biophys. Chem. 6, 379–383 (1977).

    Article  CAS  PubMed  Google Scholar 

  91. V. Giancotti, F. Quadrifoglio, R. W. Cowgill, and C. Crane-Robinson, Fluorescence of buried tyrosine residues in proteins, Biochim. Biophys. Acta 624, 60–65 (1980).

    CAS  PubMed  Google Scholar 

  92. J. Jordano, J. L. Barbero, F. Montero, and L. Franco, Fluorescence of histones H1. A tyrosinate-like fluorescence emission in Ceratitis capitata H1 at neutral pH values, J. Biol. Chem. 258, 315–320 (1983).

    CAS  PubMed  Google Scholar 

  93. S. N. Khrapunov, A. I. Dragan, A. F. Protas, and G. D. Berdyshev, The structure of the histone dimer H2A-H2B studied by spectroscopy, Biochim. Biophys. Acta 787, 97–104 (1984).

    CAS  PubMed  Google Scholar 

  94. L. J. Libertini and E. W. Small, The intrinsic fluorescence of histone H1. Steady-state and fluorescence decay studies reveal heterogeneous emission, Biophys. J. 47, 765–772 (1985).

    CAS  PubMed  Google Scholar 

  95. L. De Petrocelis, G. Quagliarotti, L. Tomei, and G. Geraci, Structuring of H1 histone. Evidence of high-affinity binding sites for phosphate ions, Eur. J. Biochem. 156, 143–148 (1986).

    Google Scholar 

  96. R. Amado, R. Aeschbach, and H. Neukom, Dityrosine: In vitro production and characterization Methods Enzymol. 107, 377–388 (1984).

    CAS  PubMed  Google Scholar 

  97. R. Carallero, B. Fernandez, and F. Montero, Influence of carboxyl groups on conformation of histone H1 from Ceratitis capitata, Int. J. Pept. Protein Res. 30, 415–422 (1987).

    Google Scholar 

  98. J. Singh and M. R. S. Rao, Interaction of rat testis protein, TP, with nucleic acids in vitro, J. Biol. Chem. 262, 734–740 (1987).

    CAS  PubMed  Google Scholar 

  99. C. Helene and G. Lancelot, Interactions between functional groups in protein-nucleic acid associations, Prog. Biophys. Mol. Biol. 39, 1–68 (1982).

    CAS  PubMed  Google Scholar 

  100. D. G. Searcy, T. Montenay-Garestier, D. J. Laston, and C. Helene, Tyrosine environment and phosphate binding in the archaebacterial histone-like protein HTa, Biochim. Biophys. Acta 953, 321–333 (1988).

    Google Scholar 

  101. D. G. Searcy, T. Montenay-Garestier, and C. Helene, Phenylalanine-to-tyrosine energy transfer in the archaebacterial histone-like protein HTa, Biochemistry 28, 9058–9065 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. F. Brun, J. J. Toulme, and C. Helene, Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides, Biochemistry 14, 558–563 (1975).

    Article  CAS  PubMed  Google Scholar 

  103. R. Mayer, F. Toulme, T. Montenay-Garestier, and C. Helene, The role of tyrosine in the association of proteins and nucleic acids. Specific recognition of single-stranded nucleic acids by tyrosine-containing peptides, J. Biol. Chem. 254, 75–82 (1979).

    CAS  PubMed  Google Scholar 

  104. D. Porschke and J. Ronnenberg, The reaction of aromatic peptides with a double helical DNA. Quantitative characterization of a two step reaction scheme, Biophys. Chem. 13, 283–290 (1981).

    CAS  PubMed  Google Scholar 

  105. T. Montenay-Garestier, M. Takasugi, and T. Le Doan, Fluorescence decay studies of peptide-nucleic acid complexes, in: Nucleic Acids: the Vectors of Life B. Pullman and J. Jortner, eds.), pp. 305–315, Reidel, Dordrecht (1983).

    Google Scholar 

  106. B. Lux, D. Gerard, and G. Laustriat, Tyrosine fluorescence of S8 and S15 Escherichia coli ribosomal proteins, FEBS Lett. 80, 66–70 (1977).

    Article  CAS  PubMed  Google Scholar 

  107. F. Culard, M. Schnarr, and J. C. Maurizot, Interaction between the lac operator and the lac repressor headpiece: Fluorescence and circular dichroism studies, EMBO J. 1, 1405–1409 (1982).

    CAS  PubMed  Google Scholar 

  108. M. Schnarr, M. Durand, and J. C. Maurizot, Nonspecific interaction of the lac repressor headpiece with deoxyribonucleic acid: Fluorescence and circular dichroism studies, Biochemistry 22, 3563–3570 (1983).

    Article  CAS  PubMed  Google Scholar 

  109. H. T. Pretorius, M. Klein, and L. A. Day, Gene V protein of fd bacteriophage. Dimer formation and the role of tyrosyl groups in DNA binding, J. Biol. Chem. 250, 9262–9269 (1975).

    CAS  PubMed  Google Scholar 

  110. T. Härd, V. Hsu, M. H. Sayre, E. P. Geiduschek, K. Appelt, and D. K. Kearns, Fluorescence studies of a single tyrosine in a type II DNA binding protein, Biochemistry 28, 396–407 (1989).

    PubMed  Google Scholar 

  111. G. Lindberg, S. C. Kowalczykowski, J. K. Rist, A. Sugino, and L. B. Rothman-Denes, Purification and characterization of the coliphage N4-coded single-stranded DNA binding protein, J. Biol. Chem. 264, 12700–12708 (1989).

    CAS  PubMed  Google Scholar 

  112. B. Lux, J. Baudier, and D. Gerard, Tyrosyl fluorescence spectra of proteins lacking tryptophan: Effects of intramolecular interactions, Photochem. Photobiol. 42, 245–251 (1985).

    CAS  PubMed  Google Scholar 

  113. S. Forsen, H. J. Vogel, and T. Drakenberg, Biophysical studies of calmodulin, in: Calcium and Cell Function, Vol. VI W. Y. Cheung, ed.), pp. 113–157, Academic Press, New York (1986).

    Google Scholar 

  114. D. Malencik and S. R. Anderson, Dityrosine formation in calmodulin, Biochemistry 26, 695–704 (1987).

    Article  CAS  PubMed  Google Scholar 

  115. K. B. Seamon, Calcium-and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance, Biochemistry 19, 207–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  116. M.-C. Kilhoffer, J. G. Demaille, and D. Gerard, Terbium as luminescent probe of calmodulin calcium-binding sites. Domains I and II contain the high-affinity sites, FEBS Lett. 116, 269–272 (1980).

    Article  CAS  PubMed  Google Scholar 

  117. M.-C. Kilhoffer, D. Gerard, and J. G. Demaille, Terbium binding to octopus calmodulin provides the complete sequence of binding, FEBS Lett. 120, 99–103 (1980).

    Article  CAS  PubMed  Google Scholar 

  118. M.-C. Kilhoffer, J. G. Demaille, and D. Gerard, Tyrosine fluorescence of ram testis and octopus calmodulins. Effects of calcium, magnesium, and ionic strength, Biochemistry 20, 4407–4414 (1981).

    Article  CAS  PubMed  Google Scholar 

  119. K. P. Kohse and L. M. Heilmeyer, The effects of Mg2+ on the Ca2+-binding properties and Ca2+-induced tyrosine-fluorescence changes of calmodulin isolated from rabbit skeletal muscle, Eur. J. Biochem. 117, 507–513 (1981).

    CAS  PubMed  Google Scholar 

  120. C. L. Wang, R. R. Aquaron, P. C. Leavis, and J. Gergely, Metal-binding properties of calmodulin, Eur. J. Biochem. 124, 7–12 (1982).

    Article  CAS  PubMed  Google Scholar 

  121. R. W. Wallace, E. A. Tallant, M. E. Dockter, and W. Y. Cheung, Calcium binding domains of calmodulin. Sequence of fill as determined by terbium luminescence, J. Biol. Chem. 257, 1845–1854 1982

    CAS  PubMed  Google Scholar 

  122. C. L. Wang, P. C. Leavis, and J. Gergely, Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin, Biochemistry 23, 6410–6415 (1984).

    CAS  PubMed  Google Scholar 

  123. S. Pundak and R. S. Roche, Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: Calcium and pH dependence, Biochemistry 23, 1549–1555 (1984).

    Article  CAS  PubMed  Google Scholar 

  124. P. K. Lambooy, R. F. Steiner, and H. Sternberg, Molecular dynamics of calmodulin as monitored by fluorescence anisotropy, Arch. Biochem. Biophys, 217, 517–528 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. R. F. Steiner, P. K. Lambooy, and H. Sternberg, The dependence of the molecular dynamics of calmodulin upon pH and ionic strength, Arch. Biochem. Biophys. 222, 158–169 (1983).

    Article  CAS  PubMed  Google Scholar 

  126. R. F. Steiner and M. Montevalli-Alibadi, The determination of the separation of tyrosine-99 and tyrosine-138 in calmodulin: Radiationless energy transfer, Arch. Biochem. Biophys. 234, 522–530 (1984).

    Article  CAS  PubMed  Google Scholar 

  127. I. Gryczynski, J. R. Lakowicz, and R. F. Steiner, Frequency-domain measurements of the rotational dynamics of the tyrosine groups of calmodulin, Biophys. Chem. 30, 49–59 (1988).

    CAS  PubMed  Google Scholar 

  128. P. Bayley, S. Martin, and G. Jones, The conformation of calmodulin: A substantial environmentally sensitive helical transition in Ca 4 -calmodulin with potential mechanistic function, FEBS Lett. 238, 61–66 (1988).

    Article  CAS  PubMed  Google Scholar 

  129. E. A. Burstein, E. A. Permyakov, V. I. Emelyanenko, T. L. Bushueva, and J.-F. Pechere, Investigation of some physico-chemical properties of muscular parvalbumins by means of the luminescence of their phenylalanyl residues, Biochim. Biophys. Acta 400, 1–16 (1975).

    CAS  PubMed  Google Scholar 

  130. E. A. Permyakov, V. V. Yarmolenko, V. I. Ememlanenko, E. A. Burstein, J. Closset, and C. Gerday, Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin, Eur. J. Biochem. 109, 307–315 (1980).

    Article  CAS  PubMed  Google Scholar 

  131. E. A. Permyakov, V. N. Medvedkin, L. P. Kalinichenko, and E. A. Burstein, Comparative study of physicochemical properties of two pike parvalbumins by means of their intrinsic tyrosyl and phenylalanyl fluorescence, Arch. Biochem. Biophys. 227, 9–20 (1983).

    Article  CAS  PubMed  Google Scholar 

  132. E. A. Permyakov, A. V. Ostrovsky, E. A. Burstein, P. G. Pleshanov, and C. Gerday, Parvalbumin conformers revealed by steady-state and time-resolved fluorescence spectroscopy, Arch. Biochem. Biophys. 240, 781–791 (1985).

    Article  CAS  PubMed  Google Scholar 

  133. R. H. Kretsinger and C. F. Nockolds, Carp muscle calcium-binding protein, J. Biol. Chem. 248, 3313–3326 (1973).

    CAS  PubMed  Google Scholar 

  134. J. P. MacManus, D. C. Watson, and M. Yaguchi, The complete amino acid sequence of oncomodulin-a parvalbumin-like calcium-binding protein from Morris hepatoma 5123tc, Eur. J. Biochem. 136, 9–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  135. J. P. MacManus, A. G. Szabo, and R. E. Williams, Conformational changes induced by binding of bivalent cations to oncomodulin, a parvalbumin-like tumour protein, Biochem. J. 220, 261–268 (1984).

    CAS  PubMed  Google Scholar 

  136. J. D. Johnson and J. D. Potter, Detection of two classes of Ca2+ binding sites in troponin C with circular dichroism and tyrosine fluorescence, J. Biol. Chem. 253, 3775–3777 (1978).

    CAS  PubMed  Google Scholar 

  137. C. L. Wang, P. C. Leavis, W. D. Horrocks, and J. Gergely, Binding of lanthanides to troponin C, Biochemistry 20, 2439–2444 (1981).

    CAS  PubMed  Google Scholar 

  138. P. C. Leavis and S. S. Lehrer, Intrinsic fluorescence studies on troponin C, Arch. Biochem. Biophys. 187, 243–251 (1978).

    Article  CAS  PubMed  Google Scholar 

  139. Z. Grabarek, R.-Y. Tan, J. Wang, T. Tao, and J. Gergely, Inhibition of mutant troponin C activity by an intra-domain disulphide bond, Nature 345, 132–135 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. P. Kanellis, J. Yang, H. C. Cheung, and R. E. Lenkinski, Synthetic peptide analogs of skeletal troponin C: Fluorescence studies of analogs of the low-affinity calcium-binding site II, Arch. Biochem. Biophys. 220, 530–540 (1983).

    Article  CAS  PubMed  Google Scholar 

  141. N. A. Malik, G. M. Anatharamaiah, A. Gawish, and H. C. Cheung, Structural and biological studies on synthetic peptide analogues of a low-affinity calcium-binding site of skeletal troponin C, Biochim. Biophys. Acta 911, 221–230 (1987).

    CAS  PubMed  Google Scholar 

  142. D. M. E. Szebenyi, S. K. Obendorf, and K. Moffat, Structure of vitamin D-dependent calcium-binding protein from bovine intestine, Nature 294, 327–332 (1981).

    Article  CAS  PubMed  Google Scholar 

  143. J. D. O’Neil, K. J. Dorrington, D. I. Kells, and T. Hoffmann, Fluorescence and circular dichroism properties of pig intestinal calcium-binding protein (M r = 9000), a protein with a single tyrosine residue, Biochem. J. 207, 389–396 (1982).

    Google Scholar 

  144. D. M. E. Szebenyi and K. Moffat, The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine, J. Biol. Chem. 261, 8761–8777 (1986).

    CAS  PubMed  Google Scholar 

  145. J. D. J. O’Neil and T. Hofmann, Tyrosine and tyrosinate fluorescence of pig intestinal Ca2+-binding protein, Biochem. J. 243, 611–615 (1987).

    Google Scholar 

  146. K. Chiba, T. Ohyashiki, and T. Mohri, Quantitative analysis of calcium binding to porcine intestinal calcium-binding protein, J. Biochem. (Tokyo) 93, 487–493 (1983).

    CAS  Google Scholar 

  147. K. Chiba, T. Ohyashiki, and T. Mohri, Stoichiometry and location of terbium and calcium binding to porcine intestinal calcium-binding protein, J. Biochem. (Tokyo) 95, 1767–1774 (1984).

    CAS  Google Scholar 

  148. J. D. O’Neil, K. J. Dorrington, and T. Hofmann, Luminescence and circular-dichroism analysis of terbium binding by pig intestinal calcium-binding protein (relative mass = 9000), Can. J. Biochem. Cell Biol. 62, 434–442 (1984).

    Google Scholar 

  149. R. Rigler, J. Roslund, and S. Forsen, Side chain mobility in bovine calbindin D 9k , Eur. J.Biochem. 118, 541–545 (1990).

    Google Scholar 

  150. R. S. Mani, B. E. Boyes, and C. M. Kay, Physicochemical and optical studies on calcium-and potassium-induced conformational changes in bovine brain S-100 b protein, Biochemistry 21, 2607–2612 (1982).

    Article  CAS  PubMed  Google Scholar 

  151. J. Baudier and D. Gerard, The S-100 b protein: Tyrosine residues do not exhibit an abnormal fluorescence spectrum, J. Neurochem. 40, 1765–1767 (1983).

    CAS  PubMed  Google Scholar 

  152. J. Baudier and D. Gérard, Ions binding to S100 proteins: Structural changes induced by calcium and zinc on Sl00a and Sl00b proteins, Biochemistry 22, 3360–3369 (1983).

    Article  CAS  PubMed  Google Scholar 

  153. J. Baudier, N. Glasser, and D. Gérard, Ions binding to S100 proteins, J. Biol. Chem. 261, 8192–8203 (1986).

    CAS  PubMed  Google Scholar 

  154. J. Baudier and R. D. Cole, The Ca2+-binding sequence in bovine brain Sl00b protein β-subunit, Biochem. J. 264, 79–85 (1989).

    CAS  PubMed  Google Scholar 

  155. Y. Mely and D. Gérard, Structural and ion-binding properties of an Sl00b protein mixed disulfide: Comparison with the reappraised native Sl00b protein properties, Arch. Biochem. Biophys. 279, 174–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. R. J. Turner, R. S. Roche, R. S. Mani, and C. M. Kay, Tyrosine and tyrosinate fluorescence of Sl00b. A time-resolved nanosecond fluorescence study. The effect of pH, Ca(II), and Zn(II), Biochem. Cell Biol. 67, 179–186 (1989).

    CAS  PubMed  Google Scholar 

  157. P. V. Hauschka and S. A. Carr, Calcium-dependent alpha-helical structure in osteocalcin, Biochemistry 21, 2538–2547 (1982).

    CAS  PubMed  Google Scholar 

  158. A. Filipek, C.W. Heizmann, and J. Kuznicki Calcyclin is a calcium and zinc binding protein, FEBS Lett. 264, 263–266 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. C. Pigault, A. Follénius-Wund, B. Lux, and D. Gérard, A fluorescence spectroscopy study of the calpactin I complex and its subunits p11 and p36: Calcium-dependent conformational changes, Biochim. Biophys. Acta 1037, 106–114 (1990).

    CAS  PubMed  Google Scholar 

  160. R. S. Mani and C. M. Kay, Isolation and characterization of a novel molecular weight 11000 Ca2+-binding protein from smooth muscle, Biochemistry 29, 1398–1404 (1990).

    Article  CAS  PubMed  Google Scholar 

  161. C. J. R. Thorne and N. O. Kaplan, Physicochemical properties of pig and horse heart mitochondrial malate dehydrogenase, J. Biol. Chem. 238, 1861–1868 (1963).

    CAS  PubMed  Google Scholar 

  162. H. B. Otwell, A. Y.-H. Tan, and M. E. Friedman, Implication of a tyrosyl residue at the active site of mitochondrial l-Malate: NAD+ oxidoreductase, Biochim. Biophys. Acta 527, 309–318 (1978).

    CAS  PubMed  Google Scholar 

  163. D. C. Wood, S. R. Jurgensen, J. C. Geesin, and J. H. Harrison, Subunit interactions in mitochondrial malate dehydrogenase, J. Biol. Chem. 256, 2377–2382 (1981).

    CAS  PubMed  Google Scholar 

  164. J. Muller, M.-F. Manent, and G. Pfleiderer, Importance of tyrosine for structure and function of mitochondrial malate dehydrogenases, Biochim. Biophys. Acta 742, 189–196 (1983).

    CAS  PubMed  Google Scholar 

  165. J. Walter and R. Huber, Pancreatic trypsin inhibitor. A new crystal form and its analysis, J. Mol. Biol. 167, 911–917 (1983).

    CAS  PubMed  Google Scholar 

  166. A. Wlodawer, J. Walter, R. Huber, and L. Sjolin, Structure of bovine pancreatic trypsin inhibitor, J. Mol. Biol. 180, 301–329 (1984).

    Article  CAS  PubMed  Google Scholar 

  167. M. Karplus and J. A. McCammon, The internal dynamics of globular proteins, CRC Crit. Rev. Biochem. 9, 293–349 (1981).

    CAS  PubMed  Google Scholar 

  168. K. Wüthrich, NMR of Proteins and Nucleic Acids, Wiley-Interscience, New York (1986).

    Google Scholar 

  169. A. Kasprzak and G. Weber, Fluorescence depolarization and rotational modes of tyrosine in bovine pancreatic trypsin inhibitor, Biochemistry 21, 5924–5927 (1982).

    Article  CAS  PubMed  Google Scholar 

  170. J. R. Lakowicz and B. Maliwal, Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins, J. Biol. Chem. 258, 4794–4801 (1983).

    CAS  PubMed  Google Scholar 

  171. J. R. Lakowicz, G. Laczko, and I. Gryczynski, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry, Biochemistry 26, 82–90 (1987).

    Article  CAS  PubMed  Google Scholar 

  172. T. M. Nordlund, X.-Y. Liu, and J. H. Sommer, Fluorescence polarization decay of tyrosine in lima bean trypsin inhibitor, Proc. Natl. Acad. Sci. U.S.A. 83, 8977–8981 (1986).

    CAS  PubMed  Google Scholar 

  173. X.-Y. Liu, K. O. Cottrell, and T. M. Nordlund, Spectroscopy and fluorescence quenching of tyrosine in lima bean trypsin/chymotrypsin inhibitor and model peptides, Photochem. Photobiol. 50, 721–731 (1989).

    CAS  PubMed  Google Scholar 

  174. S. S. Sur, L. D. Rabbani, L. Libman, and E. Breslow, Fluorescence studies of native and modified neurophysins. Effects of peptides and pH, Biochemistry 18, 1026–1036 (1979).

    Article  CAS  PubMed  Google Scholar 

  175. M. Rholam and P. Nicolas, Conformational flexibility of neurophysin as investigated by local motions of fluorophores. Relationships with neurohypophyseal hormone binding, Biochemistry 24, 1928–1933 (1985).

    CAS  PubMed  Google Scholar 

  176. M. Rholam, S. F. Scarlata, and P. Nicolas, Conformational flexibility of neurophysin as investigated by local motions of fluorophores. Relationships with neurohypophyseal hormone binding, Biochemistry 24, 7853 (1985).

    Google Scholar 

  177. S. F. Scarlata and C. A. Royer, Ligand-induced asymmetry as observed through fluorophore rotations and free energy couplings: Application to neurophysin, Biochemistry 25, 4925–4929 (1986).

    Article  CAS  PubMed  Google Scholar 

  178. N. Barboy and J. Feitelson, Fluorescence lifetime study of the denaturation of ribonuclease A, Photochem. Photobiol. 26, 561–565 (1977).

    CAS  PubMed  Google Scholar 

  179. J.-R. Garel and R. L. Baldwin, Both the fast and slow refolding reactions of ribonuclease A yield native enzyme, Proc. Natl. Acad. Sci. U.S.A. 70, 3347–3351 (1973).

    CAS  PubMed  Google Scholar 

  180. P. J. Hagerman, B. T. Nall, and R. L. Baldwin, A quantitative treatment of the kinetics of the folding of ribonuclease A, Biochemistry 15, 1462–1473 (1976).

    Article  CAS  PubMed  Google Scholar 

  181. F. X. Schmid, A native-like intermediate on the ribonuclease A folding pathway. 1. Detection by tyrosine fluorescence changes, Eur. J. Biochem. 114, 105–109 (1981).

    CAS  PubMed  Google Scholar 

  182. A. Rehage and F. X. Schmid, Fast-and slow-refolding forms of unfolded ribonuclease A differ in tyrosine fluorescence, Biochemistry 21, 1499–1505 (1982).

    Article  CAS  PubMed  Google Scholar 

  183. F. X. Schmid, R. Grafl, A. Wrba, and J. J. Beintema, Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease, Proc. Natl. Acad. Sci. U.S.A. 83, 872–876 (1986).

    CAS  PubMed  Google Scholar 

  184. P. W. Mui, Y. Konishi, and H. A. Scheraga, Kinetics and mechanism of the refolding of ribonuclease A, Biochemistry 24, 4481–4489 (1985).

    Article  CAS  PubMed  Google Scholar 

  185. H. Krebs, F. X. Schmid, and R. Jaenicke, Native-like folding intermediates of homologous ribonucleases, Biochemistry 24, 3846–3852 (1985).

    Article  CAS  PubMed  Google Scholar 

  186. E. Haas, G. T. Montelione, C. A. McWherter, and H. A. Scheraga, Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements, Biochemistry 26, 1672–1683 (1987).

    Article  CAS  PubMed  Google Scholar 

  187. A. Tulinsky, R. L. Vandlen, C. N. Morimoto, N. V. Mani, and L. H. Wright, Variability in the tertiary structure of α-chymotrypsin; at 2.8-Å resolution, Biochemistry 12, 4185–4192 (1973).

    Article  CAS  PubMed  Google Scholar 

  188. C. R. Coan, L. M. Hinman, and D. A. Deranleau, Charge-transfer studies of the availability of aromatic side chains of proteins in guanidine hydrochloride, Biochemistry 14, 4421–4427 (1974).

    Google Scholar 

  189. J. B. Massey and H. J. Pownall, Spectroscopic studies of the tyrosine residues of human plasma apolipoprotein A-II, Biochim. Biophys. Acta 999, 111–120 (1989).

    CAS  PubMed  Google Scholar 

  190. R. B. Weinberg and M. K. Jordan, Effects of phospholipid on the structure of human apolipoprotein A-IV J. Biol. Chem. 265, 8081–8086 (1990).

    CAS  PubMed  Google Scholar 

  191. P. W. Schiller, Application of fluorescence techniques in studies of peptide conformations and interactions, in: The Peptides, Vol. 7 S. Udenfriend, ed., pp. 115–164, Academic Press, New York (1985).

    Google Scholar 

  192. S. P. Wood, I. J. Tickle, A. M. Treharne, J. E. Pitts, Y. Mascarenhas, J. Y. Li, J. Husain, S. Cooper, T. L. Blundell, V. J. Hruby, A. Buku, A. J. Fischman, and H. R. Wyssbrod, Crystal structure of deamino-oxytocin: Conformational flexibility and receptor-binding, Science 232, 633–636 (1986).

    CAS  PubMed  Google Scholar 

  193. J. R. Lakowicz, G. Laczko, and I. Gryczynski, Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry, Biophys. Chem. 24, 97–100 (1986).

    Article  CAS  PubMed  Google Scholar 

  194. S. S. Lehrer and G. D. Fasman, Excimer fluorescence in lipid phenol, p-ethylphenol, and anisole, J. Am. Chem. Soc. 87, 4687–4691 (1965).

    Article  CAS  PubMed  Google Scholar 

  195. S. N. Khrapunov and A. I. Dragan, Spectroscopy of molecular interactions of tyrosine chromophore. III. Classification of the state of tyrosine residues in protein composition according to their electronic spectra, Biofizika 34, 357–363 (1989).

    CAS  Google Scholar 

  196. T. C. M. Eames, R. M. Pollack, and R. F. Steiner, Orientation, accessibility, and mobility of equilenin bound to the active site of steroid isomerase, Biochemistry 28, 6269–6275 (1989).

    Article  CAS  PubMed  Google Scholar 

  197. R. F. Chen, Fluorescence quantum yields of tryptophan and tyrosine, Anal. Lett. 1, 35–42 (1967).

    CAS  Google Scholar 

  198. K. J. Willis, A. G. Szabo, and D. T. Krajcarski, The use of Stokes Raman scattering in time correlated single photon counting: Application to the fluorescence lifetime of tyrosinate, Photochem. Photobiol. 51, 375–377 (1990).

    CAS  PubMed  Google Scholar 

  199. J. L. Cornog and W. R. Adams, The fluorescence of tyrosine in alkaline solution, Biochim. Biophys. Acta 66, 356–365 (1963).

    Article  CAS  PubMed  Google Scholar 

  200. H. Edelhoch, Spectroscopic determination of tryptophan and tyrosine in proteins, Biochemistry 6, 1948–1954 (1967).

    CAS  PubMed  Google Scholar 

  201. W. R. Laws and J. D. Shore, Spectral evidence for tyrosine ionization linked to a conformational change in liver alcohol dehydrogenase ternary complexes, J. Biol. Chem. 254, 2582–2584 (1979).

    CAS  PubMed  Google Scholar 

  202. S. Subramanian, J. B. A. Ross, L. Brand, and P. D. Ross, Investigation of the nature of enzyme-coenzyme interactions in binary and ternary complexes of liver alcohol dehydrogenase with coenzymes,coenzyme analogs, and substrate analogs by ultraviolet absorption and phosphorescence spectroscopy, Biochemistry 20, 4086–4093 (1981).

    CAS  PubMed  Google Scholar 

  203. T. Kimura and J. J. Ting, Anomalous tyrosine emission at 331 nm in adrenal two iron and two labile-sulfur protein (adrenodoxin): A possible tyrosine exciplex, Biochem. Biophys. Res. Commun. 45, 1227–1231 (1971).

    Article  CAS  PubMed  Google Scholar 

  204. T. Kimura, J. J. Ting, and J. J. Huang, Studies on adrenal steroid hydroxylases. Anomalous fluorescence of a tyrosyl residue in adrenal iron-sulfur protein (adrenodoxin), J. Biol. Chem. 247, 4476–4479 (1972).

    CAS  PubMed  Google Scholar 

  205. B. T. Lim and T. Kimura, Conformation-associated anomalous tyrosine fluorescence of adrenodoxin, J. Biol. Chem. 255, 2440–2444 (1980).

    CAS  PubMed  Google Scholar 

  206. B. T. Lim and T. Kimura, Conformational prediction and spectral studies on adrenodoxin. The accessibility of the tyrosine at position 82 in the polypeptide, J. Biol. Chem. 256, 4400–4406 (1981).

    CAS  PubMed  Google Scholar 

  207. E. Bicknell-Brown, B. T. Lim, and T. Kimura, Laser Raman spectroscopy of adrenal iron-sulfur apoprotein: The anomalous tyrosine residue at position 82, Biochem. Biophys. Res. Commun. 101, 298–305 (1981).

    CAS  PubMed  Google Scholar 

  208. M. T. Graziani, A. F. Agro, G. Rotilio, D. Barra, and B. Mondovi, Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment, Biochemistry 13, 804–809 (1974).

    Article  CAS  PubMed  Google Scholar 

  209. F. G. Prendergast, P. D. Hampton, and B. Jones, Characteristics of tyrosinate fluorescence emission in α-and β-purothionins, Biochemistry 23, 6690–6697 (1984).

    Article  CAS  PubMed  Google Scholar 

  210. C. M. L. Hutnik, J. P. MacManus, D. Banville, and A. G. Szabo, Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102, J. Biol. Chem. 265, 11456–11464 (1990).

    CAS  PubMed  Google Scholar 

  211. R. J. Turner, J. M. Matsoukas, and G. J. Moore, Tyrosinate fluorescence lifetimes for oxytocin and vasopressin in receptor-simulating environments: Relationship to biological activity and 1H-NMR data, Biochem. Biophys. Res. Commun. 171, 996–1001 (1990).

    Article  CAS  PubMed  Google Scholar 

  212. J. Longworth, A new component in protein fluorescence, Ann. N.Y. Acad. Sci. 366, 237–245 (1981).

    CAS  PubMed  Google Scholar 

  213. S. F. Pearce and E. Hawrot, Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: Perturbations produced upon binding α-bungarotoxin, Biochemistry 29, 10649–10659 (1990).

    Article  CAS  PubMed  Google Scholar 

  214. A. G. Szabo, K. R. Lynn, D. T. Krajcarski, and D. M. Rayner, Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7, FEBS Lett. 94, 249–252 (1978).

    Article  CAS  PubMed  Google Scholar 

  215. A. H. Maki and J. Zuclich, Protein triplet states, Top. Curr. Chem. 54, 115–163 (1975).

    CAS  PubMed  Google Scholar 

  216. A. L. Kwiram and J. B. A. Ross, Optical detection of magnetic resonance in biologically important molecules, Annu. Rev. Biophys. Bioeng. 11, 223–249 (1982).

    Article  CAS  PubMed  Google Scholar 

  217. N. Shaklai, N. Zisapel, and M. Sokolovsky, The role of a tyrosyl residue in the mechanism of action of carboxypeptidase B: Luminescence studies, Proc. Natl. Acad. Sci. U.S.A. 70, 2025–2028 (1973).

    CAS  PubMed  Google Scholar 

  218. N. Zisapel, N. Shaklai, and M. Sokolovsky, Metal-tyrosyl interaction in carboxypeptidase: Phosphorescence studies, FEBS Lett. 51, 262–265 (1975).

    Article  CAS  PubMed  Google Scholar 

  219. K. Ugurbil, A. H. Maki, and R. Bersohn, Study of the triplet state properties of tyrosines and tryptophan in azurins using optically detected magnetic resonance, Biochemistry 16, 901–907 (1977).

    CAS  PubMed  Google Scholar 

  220. J. B. A. Ross, K. W. Rousslang, C. DeHaen, V. R. Lavis, and D. A. Deranleau, [12-Homoarginine]glucagon: Synthesis and observations on conformation, biological activity, and copper-mediated peptide cleavage, Biochim. Biophys. Acta 576, 372–384 (1979).

    CAS  PubMed  Google Scholar 

  221. R. M. Levy and A. Szabo, Initial fluorescence depolarization of tyrosines in proteins, J. Am. Chem. Soc. 104, 2073–2075 (1982).

    CAS  Google Scholar 

  222. R. M. Levy and R. P. Sheridan, Combined effect of restricted rotational diffusion plus jumps on nuclear magnetic resonance and fluorescence probes of aromatic ring motions in proteins, Biophys. J. 41, 217–221 (1983).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Alexander Ross, J.B., Laws, W.R., Rousslang, K.W., Wyssbrod, H.R. (2002). Tyrosine Fluorescence and Phosphorescence from Proteins and Polypeptides. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47059-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47059-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43954-4

  • Online ISBN: 978-0-306-47059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics