Monotone Random Systems Theory and Applications

  • Authors
  • Igor Chueshov

Part of the Lecture Notes in Mathematics book series (LNM, volume 1779)

Table of contents

  1. Front Matter
    Pages N2-VIII
  2. Igor Čhuešhov
    Pages 1-7
  3. Igor Čhuešhov
    Pages 55-81
  4. Igor Čhuešhov
    Pages 83-111
  5. Igor Čhuešhov
    Pages 113-141
  6. Igor Čhuešhov
    Pages 143-183
  7. Igor Čhuešhov
    Pages 185-225
  8. Igor Čhuešhov
    Pages 227-231
  9. Igor Čhuešhov
    Pages 233-234
  10. Back Matter
    Pages 235-237

About this book

Introduction

The aim of this book is to present a recently developed approach suitable for investigating a variety of qualitative aspects of order-preserving random dynamical systems and to give the background for further development of the theory. The main objects considered are equilibria and attractors. The effectiveness of this approach is demonstrated by analysing the long-time behaviour of some classes of random and stochastic ordinary differential equations which arise in many applications.

Keywords

Dynamical system attractors equilibria order-preserving random dynamical system random dynamics

Bibliographic information

  • DOI https://doi.org/10.1007/b83277
  • Copyright Information Springer-Verlag Berlin Heidelberg 2002
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-43246-3
  • Online ISBN 978-3-540-45815-9
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book