Osserman Manifolds in Semi-Riemannian Geometry

  • Authors
  • Eduardo García-Río
  • Demir N. Kupeli
  • Ramón Vázquez-Lorenzo

Part of the Lecture Notes in Mathematics book series (LNM, volume 1777)

Table of contents

  1. Front Matter
    Pages I-XII
  2. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 1-20
  3. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 21-37
  4. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 39-61
  5. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 63-94
  6. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 95-136
  7. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 137-156
  8. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 157-163
  9. Eduardo García-Río, Demir N. Kupeli, Ramón Vázquez-Lorenzo
    Pages 165-166
  10. Back Matter
    Pages 167-169

About this book

Introduction

The subject of this book is Osserman semi-Riemannian manifolds, and in particular, the Osserman conjecture in semi-Riemannian geometry. The treatment is pitched at the intermediate graduate level and requires some intermediate knowledge of differential geometry. The notation is mostly coordinate-free and the terminology is that of modern differential geometry. Known results toward the complete proof of Riemannian Osserman conjecture are given and the Osserman conjecture in Lorentzian geometry is proved completely. Counterexamples to the Osserman conjuncture in generic semi-Riemannian signature are provided and properties of semi-Riemannian Osserman manifolds are investigated.

Keywords

Osserman Conjecture Osserman Semi-Riemannian Manifold Riemannian geometry differential geometry manifold two-point homogeneous spaces

Bibliographic information

  • DOI https://doi.org/10.1007/b83213
  • Copyright Information Springer-Verlag Berlin Heidelberg 2002
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-43144-2
  • Online ISBN 978-3-540-45629-2
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book