Convex Polyhedra

  • Authors
  • †A.D. Alexandrov

Part of the Springer Monographs in Mathematics book series (SMM)

About this book

Introduction

Convex Polyhedra is one of the classics in geometry. There simply is no other book with so many of the aspects of the theory of 3-dimensional convex polyhedra in a comparable way, and in anywhere near its detail and completeness. It is the definitive source of the classical field of convex polyhedra and contains the available answers to the question of the data uniquely determining a convex polyhedron. This question concerns all data pertinent to a polyhedron, e.g. the lengths of edges, areas of faces, etc. This vital and clearly written book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. It is a wonderful source of ideas for students.

The English edition includes numerous comments as well as added material and a comprehensive bibliography by V.A. Zalgaller to bring the work up to date. Moreover, related papers by L.A.Shor and Yu.A.Volkov have been added as supplements to this book.

Keywords

Dimension Finite convex polyhedra geometry rigidity theorem

Bibliographic information

  • DOI https://doi.org/10.1007/b137434
  • Copyright Information Springer-Verlag Berlin Heidelberg 2005
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-540-23158-5
  • Online ISBN 978-3-540-26340-1
  • Series Print ISSN 1439-7382
  • About this book