Advertisement

Deformations of Singularities

  • Authors
  • Jan Stevens

Part of the Lecture Notes in Mathematics book series (LNM, volume 1811)

Table of contents

  1. Front Matter
    Pages N2-VII
  2. Jan Stevens
    Pages 1-4
  3. Jan Stevens
    Pages 5-14
  4. Jan Stevens
    Pages 15-22
  5. Jan Stevens
    Pages 23-31
  6. Jan Stevens
    Pages 39-44
  7. Jan Stevens
    Pages 45-53
  8. Jan Stevens
    Pages 55-61
  9. Jan Stevens
    Pages 71-77
  10. Jan Stevens
    Pages 79-92
  11. Jan Stevens
    Pages 93-104
  12. Jan Stevens
    Pages 105-111
  13. Jan Stevens
    Pages 113-124
  14. Jan Stevens
    Pages 125-136
  15. Jan Stevens
    Pages 147-153
  16. Jan Stevens
    Pages 155-157
  17. Back Matter
    Pages 159-161

About this book

Introduction

These notes deal with deformation theory of complex analytic singularities and related objects.

The first part treats general theory. The central notion is that of versal deformation
in several variants. The theory is developed both in an abstract way and in a concrete way suitable for computations.

The second part deals with more specific problems, specially on curves and surfaces. Smoothings of singularities are the main concern.

Examples are spread throughout the text.

Keywords

Singularity deformation deformation theory manifold quasi-cone smoothing versality

Bibliographic information

  • DOI https://doi.org/10.1007/b10723
  • Copyright Information Springer-Verlag Berlin Heidelberg 2003
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-00560-5
  • Online ISBN 978-3-540-36464-1
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site