Advertisement

Cryocoolers 12

  • Ronald G. RossJr.

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Government Cryocooler Development Programs

  3. Space Stirling Cryocooler Developments

    1. T. Trollier, A. Ravex, P. Crespi, J. Mullié, P. Bruins, T. Benschop
      Pages 31-35
    2. K. A. Shirey, I. S. Banks, S. R. Breon, R. F. Boyle
      Pages 37-44
    3. W. J. Gully, D. Glaister, E. Marquardt, R. Stack, G. P. Wright
      Pages 45-50
    4. C. H. Y. Bruninghaus, B. J. Tomlinson, N. Abhyankar
      Pages 51-58
    5. S. A. Yarbrough, B. A. Flake, B. J. Tomlinson, N. Abhyankar
      Pages 59-67
  4. Tactical and Commercial Stirling Cryocoolers

    1. S.W.K. Yuan, D.T. Kuo, T.D. Lody
      Pages 79-85
    2. J. M. Cauquil, J. Y. Martin, P. Bruins, T. Benschop
      Pages 87-94
    3. S.J. Park, Y.J. Hong, H.B. Kim, D.Y. Koh, B.K. Yu, K.B. Lee
      Pages 95-101
    4. Y-J. Hong, S-J. Park, H-B. Kim, D-Y. Koh
      Pages 103-108
  5. Tactical and Commercial Pulse Tube Cryocoolers

    1. P.C. Bruins, A. de Koning, T. Hofman
      Pages 109-114
    2. J. Liang, J.H. Cai, Y. Zhou, W.X. Zhu, L.W. Yan, W. Jing et al.
      Pages 115-121
    3. I. Charles, J. M. Duvaland, L. Duband, T. Trollier, A. Ravex, J. Y. Martin
      Pages 131-138
    4. L. W. Yang, N. Rolff, G. Thummes, H.U. Häfner
      Pages 149-155
    5. Y. Yasukawa, K. Ohshima, K. Toyama, T. Itoyama, Y. Tsukahara, R. Kikuchi et al.
      Pages 157-164
  6. Space Pulse Tube Cryocooler Developments

    1. T. Trollier, A. Ravex, I. Charles, L. Duband, J. Mullié, P. Bruins et al.
      Pages 165-171
    2. A.S. Gibson, R. Hunt, I. Charles, L. Duband, M. Crook, A.H. Orlowska et al.
      Pages 173-182
    3. C. S. Kirkconnell, G. R. Pruitt, K. D. Price, B. A. Ross Jr., W. R. Derossett
      Pages 183-190
    4. J. Raab, R. Colbert, J. Godden, D. Harvey, R. Orsini, G. Toma
      Pages 191-197
    5. Salerno L. J, Kittel P, Helvensteijn B. P. M, Kashani A
      Pages 199-204
    6. T. Nast, J. Olson, P. Champagne, B. Evtimov, Todd Renna, G. Sarri et al.
      Pages 205-212
    7. T. C. Nast, J. Olson, B. Evtimov, V. Kotsubo
      Pages 213-218
    8. C.K. Chan, T. Nguyen, C. Jaco, B. J. Tomlinson, T. Davis
      Pages 219-224
    9. W.G. Foster, J. Olson, P. Champagne, B. Evtimov, E. Will, A. Collaco et al.
      Pages 225-232
    10. K.D. Price, C.S. Kirkconnell
      Pages 233-239
    11. J. Olson, T. C. Nast, B. Evtimov, E. Roth
      Pages 241-246
  7. Linear Compressor Development and Modeling

    1. P.B. Bailey, M.W. Dadd, C.F. Cheuk, N.G. Hill, Jeff Raab
      Pages 247-253
    2. M.W. Dadd, P.B. Bailey, G. Davey, T. Davis, B. J. Tomlinson
      Pages 255-264
    3. P.C.T. de Boer, J.-M. Duval, I. Charles, L. Duband
      Pages 265-274
    4. C. F. Cheuk, N. G. Hill, R. Strauch, P.B. Bailey, Jeff Raab
      Pages 275-281
  8. GM-Type Pulse Tube Coolers for Low Temperatures

    1. I.A. Tanaeva, A.T.A.M. de Waele
      Pages 283-292
    2. M.Y. Xu, P.D. Yan, T. Koyama, T. Ogura, R. Li
      Pages 301-307
    3. S.W. Zhu, M. Nogawa, S. Katsuragawa, M. Ichikawa, T. Inoue
      Pages 309-315
  9. Hybrid Cryocoolers Using Pulse Tubes

    1. N. Jiang, Z. H. Gan, G. B. Chen, L. M. Qiu, Y. L. Jiang, Y. L. He et al.
      Pages 325-329
    2. W. Dai, Y. Matsubara, H. Kobayashi
      Pages 331-336
    3. A. Waldauf, T. Schmauder, M. Thürk, P. Seidel
      Pages 337-342
    4. Y. Matsubara, W. Dai, H. Sugita, S. Tooyama
      Pages 343-348
    5. G. F. Nellis, J. R. Maddocks, A. Kashani, J. H. Baik, J. M. Pfotenhauer
      Pages 349-359
  10. Pulse Tube Analyses and Experimental Measurements

About this book

Introduction

The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. One class of pulse tubes that has reached maturity is referred to as “Stirling type” because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide cooling in the 30 to 100 K temperature range and operate at frequencies from 30 to 60 Hz. The other type of pulse tube cooler making great advances is the so-called “Gifford-McMahon type. ” Pulse tube coolers of this type use a G-M type compressor and lower frequency operation to achieve temperatures in the 2 to 10 K temperature range. Nearly a third of this proceedings covers these new developments in the pulse tube arena. Complementing the work on low-temperature pulse tubes is substantial continued progress on rare earth regenerator materials and Gifford-McMahon coolers. These technologies continue to make great progress in opening up the 2 - 4 K market. Also in the commercial sector, continued interest is being shown in the development of long-life, low-cost cryocoolers for the emerging high temperature superconductor electronics market, particularly the cellular telephone base-station market. At higher temperature levels, closed-cycle J-T or throttle-cycle refrigerators are taking advantage of mixed refrigerant gases to achieve low-cost cryocooler systems in the 65 to 80 K temperature range.

Keywords

design development modeling semiconductor space

Editors and affiliations

  • Ronald G. RossJr.
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Bibliographic information

  • DOI https://doi.org/10.1007/b100535
  • Copyright Information Springer Science+Business Media New York 2003
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-306-47714-0
  • Online ISBN 978-0-306-47919-9
  • Buy this book on publisher's site