Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Leningrad, May 13–24, 1991

  • Editors
  • Andrei A. Gonchar
  • Edward B. Saff

Part of the Lecture Notes in Mathematics book series (LNM, volume 1550)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Thomas Bagby, Norman Levenberg
    Pages 7-18
  3. A. P. Buslaev, V. M. Tikhomirov
    Pages 19-30
  4. Charles K. Chui
    Pages 31-42
  5. E. A. Rakhmanov
    Pages 71-97
  6. Herbert Stahl
    Pages 110-130
  7. Mizan Rahman, S. K. Suslov
    Pages 131-146
  8. A. I. Aptekarev
    Pages 147-148
  9. V. N. Temlyakov
    Pages 178-184
  10. S. Khrushchev
    Pages 185-191

About these proceedings


The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.


Approximation Blaschke product Complex analysis Fourier expansions Mathematical Physic Pade aproximation linear optimization mathematical physics orthogonal polynomials potentials

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 1993
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-56931-2
  • Online ISBN 978-3-540-47792-1
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book