Advertisement

Table of contents

  1. Front Matter
  2. Pages 1-5
  3. Pages 95-182
  4. Pages 183-289
  5. Pages 291-319
  6. Pages 321-348
  7. Back Matter

About this book

Introduction

This book gives an introduction to H-infinity and H2 control for linear time-varying systems. Chapter 2 is concerned with continuous-time systems while Chapter 3 is devoted to discrete-time systems.
The main aim of this book is to develop the H-infinity and H2 theory for jump systems and to apply it to sampled-data systems. The jump system gives a natural state space representation of sampled-data systems, and original signals and parameters are maintained in the new system. Two earlier chapters serve as preliminaries. Chapter 4 introduces jump systems and develops the H-infinity and H2 theory for them. It is then applied to sampled-data systems in Chapter 5.
The new features of this book are as follows: The H-infinity control theory is developed for time-varying systems with initial uncertainty. Recent results on the relation of three Riccati equations are included. The H2 theory usually given for time-invariant systems is extended to time-varying systems. The H-infinity and H2 theory for sampled-data systems is established from the jump system point of view. Extension of the theory to infinite dimensional systems and nonlinear systems is discussed. This covers the sampled-data system with first-order hold. In this book 16 examples and 40 figures of computer simulations are included.
The reader can find the H-infinity and H2 theory for linear time-varying systems and sampled-data systems developed in a unified manner. Some arguments inherent to time varying systems or the jump system point of view to sampled-data systems may give new insights into the system theory of time-invariant systems and sampled-data systems.

Keywords

Discrete time systems Jump systems Linear Systems Sampled data systems Time Varying Systems control theory nonlinear system simulation systems theory

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0110391
  • Copyright Information Springer-Verlag London Limited 2001
  • Publisher Name Springer, London
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-85233-439-0
  • Online ISBN 978-1-84628-575-2
  • Series Print ISSN 0170-8643
  • Series Online ISSN 1610-7411
  • Buy this book on publisher's site